This work is concerned with damage detection in a commercial 52-meter wind turbine blade during fatigue testing. Different artificial damages are introduced in the blade in the form of laminate cracks. The lengths of the damages are increased manually, and they all eventually propagate and develop into delaminations during fatigue loading. Strain gauges, acoustic emission sensors, distributed accelerometers, and an active vibration monitoring system are used to track different physical responses in healthy and damaged states of the blade. Based on the recorded data, opportunities and limitations of the different sensing systems for blade structural health monitoring are investigated.
This work is concerned with a structural health monitoring campaign of a 52-m wind turbine blade. Multiple artificial damages are introduced in the blade sequentially, and fatigue testing is conducted with each damage in sequence. Progressive fatigue-driven damage propagation is achieved, enabling investigations concerning detection of initiation and propagation of damage in the blade. Using distributed accelerometers, operational modal analysis is performed to extract the lower-order natural vibration modes of the blade, which are shown to not be sensitive to small damages in the blade. To enable monitoring of small damages, an active vibration monitoring system is used, comprised of an electrodynamic vibration shaker and distributed accelerometers. From the accelerometer data, frequency domain methods are used to extract features. Using the extracted features, outlier detection is performed to investigate changes in the measurements resulting from the introduced damages. Capabilities of using features based on the active vibration data for detection of initiation and progression of damage in a wind turbine blade during fatigue testing are investigated, showing good correlation between the observed damage progression and the calculated changes in the damage index.
The present work investigates the performance of different features, extracted from vibration‐based data, for structural health monitoring of a 52‐meter wind turbine blade during fatigue testing. An active vibration monitoring system was used during the test campaign, providing periodic excitation of single frequencies in the medium‐frequency range, and using accelerometers to measure the vibration output on different parts of the blade. Based on previous work from the authors, data is available for the wind turbine blade in healthy state, with a manually induced damage, and with progressively increasing damage severity. Using the vibration data, different signal processing methods are used to extract damage‐sensitive features. Time series methods and time‐frequency domain methods are used to quantify the applied active vibration signal. Using outlier analysis, the health state of the blade is classified, and the classification accuracy through use of the different features is compared. Highest performance is generally obtained by auto‐regressive modeling of the vibration outputs, using the auto‐regressive parameters as features. Finally, suggestions for future improvements of the present method toward practical implementation are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.