In the setting of stochastic dynamical systems that eventually go extinct, the quasi-stationary distributions are useful to understand the long-term behavior of a system before evanescence. For a broad class of applicable continuous-time Markov processes on countably infinite state spaces, known as reaction networks, we introduce the inferred notion of absorbing and endorsed sets, and obtain sufficient conditions for the existence and uniqueness of a quasi-stationary distribution within each such endorsed set. In particular, we obtain sufficient conditions for the existence of a globally attracting quasi-stationary distribution in the space of probability measures on the set of endorsed states. Furthermore, under these conditions, the convergence from any initial distribution to the quasi-stationary distribution is exponential in the total variation norm.
This paper provides a full classification of the dynamics for continuous-time Markov chains (CTMCs) on the nonnegative integers with polynomial transition rate functions and without arbitrary large backward jumps. Such stochastic processes are abundant in applications, in particular in biology. More precisely, for CTMCs of bounded jumps, we provide necessary and sufficient conditions in terms of calculable parameters for explosivity, recurrence versus transience, positive recurrence versus null recurrence, certain absorption, and implosivity. Simple sufficient conditions for exponential ergodicity of stationary distributions and quasi-stationary distributions as well as existence and nonexistence of moments of hitting times are also obtained. Similar simple sufficient conditions for the aforementioned dynamics together with their opposite dynamics are established for CTMCs with unbounded forward jumps. Finally, we apply our results to stochastic reaction networks, an extended class of branching processes, a general bursty single-cell stochastic gene expression model, and population processes, none of which are birth–death processes. The approach is based on a mixture of Lyapunov–Foster-type results, the classical semimartingale approach, and estimates of stationary measures.
This paper studies the dynamics of continuous time Markov chains with possibly unbounded jump sizes on the non-negative integers with polynomial transition rate functions. Such stochastic processes are abundant in applications, in particular in biology. We provide threshold criteria in terms of easily computable parameters for various dynamical properties such as explosivity, recurrence, transience, certain absorption, positive/null recurrence, implosivity, and existence and non-existence of moments of hitting times. In particular, simple sufficient conditions for exponential ergodicity of stationary distributions and quasi-stationary distributions are obtained, and the few gap cases are identified and well-illustrated by examples. Subtle differences in conditions for different dynamical properties are revealed in terms of examples. Finally, we apply our results to stochastic reaction networks, an extended class of branching processes, a general bursty single-cell stochastic gene expression model, and population processes, none of which are birth-death processes.
This paper investigates tail asymptotics of stationary distributions and quasistationary distributions of continuous-time Markov chains on a subset of the non-negative integers. A new identity for stationary measures is established. In particular, for continuoustime Markov chains with asymptotic power-law transition rates, tail asymptotics for stationary distributions are classified into three types by three easily computable parameters: (i) Conley-Maxwell-Poisson distributions (light-tailed), (ii) exponential-tailed distributions, and (iii) heavy-tailed distributions. Similar results are derived for quasi-stationary distributions. The approach to establish tail asymptotics is different from the classical semimartingale approach. We apply our results to biochemical reaction networks (modeled as continuous-time Markov chains), a general single-cell stochastic gene expression model, an extended class of branching processes, and stochastic population processes with bursty reproduction, none of which are birth-death processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.