These results highlight that electronic self-monitoring, although intuitive and appealing, needs critical consideration and further clarification before it is implemented as a clinical tool.
An increasing number of pervasive healthcare systems are being designed, that allow people to monitor and get feedback on their health and wellness. To address the challenges of self-management of mental illnesses, we have developed the MONARCA system -a personal monitoring system for bipolar patients. We conducted a 14 week field trial in which 12 patients used the system, and we report findings focusing on their experiences. The results were positive; compared to using paper-based forms, the adherence to self-assessment improved; the system was considered very easy to use; and the perceived usefulness of the system was high. Based on this study, the paper discusses three HCI questions related to the design of personal health technologies; how to design for disease awareness and self-treatment, how to ensure adherence to personal health technologies, and the roles of different types of technology platforms.
Changes in speech have been suggested as sensitive and valid measures of depression and mania in bipolar disorder. The present study aimed at investigating (1) voice features collected during phone calls as objective markers of affective states in bipolar disorder and (2) if combining voice features with automatically generated objective smartphone data on behavioral activities (for example, number of text messages and phone calls per day) and electronic self-monitored data (mood) on illness activity would increase the accuracy as a marker of affective states. Using smartphones, voice features, automatically generated objective smartphone data on behavioral activities and electronic self-monitored data were collected from 28 outpatients with bipolar disorder in naturalistic settings on a daily basis during a period of 12 weeks. Depressive and manic symptoms were assessed using the Hamilton Depression Rating Scale 17-item and the Young Mania Rating Scale, respectively, by a researcher blinded to smartphone data. Data were analyzed using random forest algorithms. Affective states were classified using voice features extracted during everyday life phone calls. Voice features were found to be more accurate, sensitive and specific in the classification of manic or mixed states with an area under the curve (AUC)=0.89 compared with an AUC=0.78 for the classification of depressive states. Combining voice features with automatically generated objective smartphone data on behavioral activities and electronic self-monitored data increased the accuracy, sensitivity and specificity of classification of affective states slightly. Voice features collected in naturalistic settings using smartphones may be used as objective state markers in patients with bipolar disorder.
BackgroundRecently, the MONARCA I randomized controlled trial (RCT) was the first to investigate the effect of smartphone-based monitoring in bipolar disorder (BD). Findings suggested that smartphone-based monitoring sustained depressive but reduced manic symptoms. The present RCT investigated the effect of a new smartphone-based system on the severity of depressive and manic symptoms in BD.MethodsRandomized controlled single-blind parallel-group trial. Patients with BD, previously treated at The Copenhagen Clinic for Affective Disorder, Denmark and currently treated at community psychiatric centres, private psychiatrists or GPs were randomized to the use of a smartphone-based system or to standard treatment for 9 months. Primary outcomes: differences in depressive and manic symptoms between the groups.ResultsA total of 129 patients with BD (ICD-10) were included. Intention-to-treat analyses showed no statistically significant effect of smartphone-based monitoring on depressive (B = 0.61, 95% CI −0.77 to 2.00, p = 0.38) and manic (B = −0.25, 95% CI −1.1 to 0.59, p = 0.56) symptoms. The intervention group reported higher quality of life and lower perceived stress compared with the control group. In sub-analyses, the intervention group had higher risk of depressive episodes, but lower risk of manic episodes compared with the control group.ConclusionsThere was no effect of smartphone-based monitoring. In patient-reported outcomes, patients in the intervention group reported improved quality of life and reduced perceived stress. Patients in the intervention group had higher risk of depressive episodes and reduced risk of manic episodes. Despite the widespread use and excitement of electronic monitoring, few studies have investigated possible effects. Further studies are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.