Biocompatible and degradable dual‐delivery gel systems based on hyperbranched dendritic−linear−dendritic copolymers (HBDLDs) is herein conceptualized and accomplished via thiol‐ene click chemistry. The elasticity of the hydrogels is tunable by varying the lengths of PEG (2, 6, 10 kDa) or the dry weight percentages (20, 30, 40 wt%), and are found to range from 2–14.7 kPa, comparable to human skin. The co‐delivery of antibiotics is achieved, where the hydrophilic drug novobiocin sodium salt (NB) is entrapped within the hydrophilic hydrogel, while the hydrophobic antibiotic ciprofloxacin (CIP) is encapsulated within the dendritic nanogels (DNGs) with hydrophobic cores (DNGs‐CIP). The DNGs‐CIP with drug loading capacity of 2.83 wt% are then physically entrapped within the hybrid hydrogels through UV curing. The hybrid hydrogels enable the quick release of NB and prolonged released of CIP. In vitro cell infection assays showed that the antibiotic‐loaded hybrid hydrogels are able to treat bacterial infections with significant bacterial reduction. Hybrid hydrogel band aids are fabricated and exhibited better antibacterial activity compared with commercial antimicrobial band aids. Remarkably, most hydrogels and hybrid hydrogels show enhanced human dermal cell proliferation and could be degraded into non‐toxic constituents, showing great promise as wound dressing materials.
In article number 2006453, Michael Malkoch and co‐workers report a series of sophisticated nanogel encapsulated hydrogels for the controlled co‐delivery of both hydrophobic and hydrophilic antibiotics. The hybrid hydrogels match the strength and flexibility of human skin and cause enhanced proliferation of human skin cells in vitro. The antibacterial hydrogel band aids, fabricated in a facile procedure, far outperform commercial antibacterial band aids.
Natural polymers such as collagen are popular materials for tissue engineering scaffolds due to their innate bioactivity and biocompatibility. Being derived from animal sources, however, means that batch-to-batch consistency is often low and the extraction of collagen is costly. This conundrum facilitates the need for synthetic alternatives as scaffolding materials. In this study, a system of poly(ethylene glycol) (PEG)-based thiol-ene coupled (TEC) hydrogel scaffolds is presented for tissue engineering purposes. The platform includes several necessary features, namely cytocompatibility, high swelling ability, biodegradability, tunable stiffness, and fast, straightforward fabrication. The swelling ability is provided by the hydrophilicity of the ether-links of PEG, which facilitated the formation of high water content hydrogels that match the water content of soft tissues for the proper diffusion of nutrients and waste compounds. TEC ensures fast and facile fabrication, with cross-linking moieties that allow for the biodegradation of the hydrogel network through hydrolytic cleavage. The mechanical properties of the scaffolds are made tunable in the range of storage moduli spanning <1 kPa to >100 kPa. It is also shown that despite the synthetic nature of the hydrogels, human dermal fibroblasts and murine macrophages, Raw 264.7, were able to survive and produce extracellular protein excretions while embedded in the 3D hydrogels.
Infections caused by antibiotic-resistant bacteria are globally a major threat, leading to high mortality rates and increased economic burden. Novel treatment strategies are therefore urgently needed by healthcare providers to protect people. Biomaterials that have inherent antibacterial properties and do not require the use of antibiotics present an attractive and feasible avenue to achieve this goal. Herein, we demonstrate the effect of a new class of cationic hydrogels based on amino-functional hyperbranched dendritic−linear−dendritic copolymers (HBDLDs) exhibiting excellent antimicrobial activity toward a wide range of clinical Gram-positive and Gram-negative bacteria, including drug-resistant strains isolated from wounds. Intriguingly, the hydrogels can induce the expression of the antimicrobial peptides RNase 7 and psoriasin, promoting host-mediated bacterial killing in human keratinocytes (HaCaT). Moreover, treatment with the hydrogels decreased the proinflammatory cytokine IL-1β, reactive nitrogen species (NO), and mitochondrial reactive oxygen species (ROS) in S. aureus-infected HaCaT cells, conjunctively resulting in reduced inflammation.
Due to its unique properties resembling living tissues, hydrogels are attractive carriers for the localized and targeted delivery of various drugs. Drug release kinetics from hydrogels are commonly controlled by network properties and the drug-network interactions. However, and simultaneously, the programmable delivery of multiple drugs with opposing properties (hydrophilicity, molecular weight, etc.) from hydrogels with determined network properties is still challenging. Herein, we describe the preparation of injectable self-healing hyaluronic acid (HA) hydrogels that release hydrophobic simvastatin and hydrophilic aminobisphosphonate (BP) drugs independently in response to acidic and thiol-containing microenvironments, respectively. We apply a prodrug strategy to BP by conjugating it to HA via a self-immolative disulfide linker that is stable in the blood plasma and is cleavable in the cytoplasm. Moreover, we utilize HA-linked BP ligands to reversibly bind Ca2+ ions and form coordination hydrogels. Hydrazone coupling of hydrophobic ligands to HA permits the encapsulation of simvastatin molecules in the resulting amphiphilic HA derivative and the subsequent acid-triggered release of the drug. The conjugation of BP and hydrophobic ligands to HA enables preparation of both bulk self-healing hydrogels and nanogels. Moreover, the developed hydrogel system is shown to be multi-responsive by applying orthogonally cleavable linkers. The presented hydrogel is a potential candidate for the combination treatment of osteoporosis and bone cancers as well as for bone tissue regeneration since it can deliver bone anabolic and anti-catabolic agents in response to bone diseases microenvironments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.