The mannan-binding lectin (MBL) pathway of complement activation is part of the innate immune defense. The binding of MBL to microbial carbohydrates activates the MBL-associated serine proteases (MASPs), which recruit the complement factors, C4 and C2, to generate the C3 convertase or directly activate C3. We present a phylogenetically highly conserved member of the MBL complex, MASP-3, which is generated through alternative splicing of the MASP-1/3 gene. The designation of MASP-3 as a protease is based on homology to known MASPs. Different MBL oligomers were found to have distinct MASP composition and biological activities. MASP-1, MAp19, and direct C3-cleaving activity are associated with smaller oligomers whereas MASP-3 is found together with MASP-2 on larger oligomers. MASP-3 downregulate the C4 and C2 cleaving activity of MASP-2.
Mannan-binding lectin (MBL)-associated serine proteases (MASP-1, -2, and -3) are homologous modular proteases that each associate with MBL and L- and H-ficolins, which are oligomeric serum lectins involved in innate immunity. To investigate its physicochemical, interaction, and enzymatic properties, human MASP-3 was expressed in insect cells. Ultracentrifugation analysis indicated that rMASP-3 sedimented as a homodimer (s20,w = 6.2 ± 0.1 S) in the presence of Ca2+, and as a monomer (s20,w = 4.6 ± 0.1 S) in EDTA. As shown by surface plasmon resonance spectroscopy, it associated with both MBL (KD = 2.6 nM) and L-ficolin (KD = 7.2 nM). The protease was produced in a single-chain, proenzyme form, but underwent slow activation upon prolonged storage at 4°C, resulting from cleavage at the Arg430-Ile431 activation site. Activation was prevented in the presence of protease inhibitors iodoacetamide and 1,10-phenanthroline but was not abolished upon substitution of Ala for the active site Ser645 of MASP-3, indicating extrinsic proteolysis. In contrast, the corresponding mutations Ser627→Ala in MASP-1 and Ser618→Ala in MASP-2 stabilized the latter in their proenzyme form. Likewise, the MASP-1 and MASP-2 mutants were each activated by their active counterparts, but MASP-3 S645A was not. Activated MASP-3 did not react with C1 inhibitor; had no activity on complement proteins C2, C4, and C3; and only cleaved the N-carboxybenzyloxyglycine-l-arginine thiobenzyl ester substrate to a significant extent. Based on these observations, it is postulated that MASP-3 activation and control involve mechanisms that are different from those of MASP-1 and -2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.