We examine the polynomial form of the scattering equations by means of computational algebraic geometry. The scattering equations are the backbone of the Cachazo-He-Yuan (CHY) representation of the S-matrix. We explain how the Bezoutian matrix facilitates the calculation of amplitudes in the CHY formalism, without explicitly solving the scattering equations or summing over the individual residues. Since for n-particle scattering, the size of the Bezoutian matrix grows only as (n − 3) × (n − 3), our algorithm is very efficient for analytic and numeric amplitude computations.
We develop a systematic procedure for computing maximal unitarity cuts of multiloop Feynman integrals in arbitrary dimension. Our approach is based on the Baikov representation in which the structure of the cuts is particularly simple. We examine several planar and nonplanar integral topologies and demonstrate that the maximal cut inherits IBPs and dimension shift identities satisfied by the uncut integral. Furthermore, for the examples we calculated, we find that the maximal cut functions from different allowed regions, form the Wronskian matrix of the differential equations on the maximal cut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.