We consider the reconstruction of a compactly supported source term in the constantcoefficient Helmholtz equation in R 3 , from the measurement of the outgoing solution at a source-enclosing sphere. The measurement is taken at a finite number of frequencies. We explicitly characterize certain finite-dimensional spaces of sources that can be stably reconstructed from such measurements. The characterization involves only the measurement frequencies and the problem geometry parameters. We derive a singular value decomposition of the measurement operator, and prove a lower bound for the spectral bandwidth of this operator. By relating the singular value decomposition and the eigenvalue problem for the Dirichlet-Laplacian on the source support, we devise a fast and stable numerical method for the source reconstruction. We do numerical experiments to validate the stability and efficiency of the numerical method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.