In this study, the enhancement of physical absorption of carbon dioxide by Fe3O4‐water nanofluid under the influence of AC and DC magnetic fields was investigated. Furthermore, a gas‐liquid mass transfer model for single bubble systems was applied to predict mass transfer parameters. The coated Fe3O4 nanoparticles were prepared using co‐percipitation method. The results from characterization indicated that the nanoparticles surfaces were covered with hydroxyl groups and nanoparticles diameter were 10–13 nm. The findings showed that the mass transfer rate and solubility of carbon dioxide in magnetic nanofluid increased with an increase in the magnetic field strength. Results indicated that the enhancement of carbon dioxide solubility and average molar flux gas into liquid phase, particularly in the case of AC magnetic field. Moreover, results demonstrated that mass diffusivity of CO2 in nanofluid and renewal surface factor increased when the intensity of the field increased and consequently diffusion layer thickness decreased. © 2016 American Institute of Chemical Engineers AIChE J, 63: 2176–2186, 2017
The chargeÀ discharge operation of the vanadium redox flow battery degrades the electrodes over time and results in a performance and efficiency decay. The impact of extended chargeÀ discharge cycling operation on carbon electrodes is investigated using carbon paper as a model electrode. Electrode degradation along with 70 % degradation of chargeÀ discharge capacity was observed after 100 chargeÀ discharge cycles of a single cell vanadium redox flow battery operating at a current density of 80 mA cm À 2 at room temperature (23°C). Raman mapping of the electrodes shows a decrease in structural defects in the negative electrode, and an increase in defects in the positive electrode, indicating differences in the degradation mechanism at each electrode. Electrochemical investigation reveals an increase in the activation overpotential at both the positive and negative electrodes. However, the negative electrode showed a higher activation overpotential indicating a higher impact of electrode degradation on the negative side. Xray photoelectron spectroscopy shows around an eightfold increase in surface oxygen functional groups after degradation in both positive and negative electrodes. The composition of oxygen functional groups was also observed to change significantly after degradation from dominantly carbonyl-based to a combination of carbonyl-and carboxyl-based groups. This study provides insight into the electrode degradation mechanism and highlights the differences in the mechanism for the positive and negative electrodes.
Redox flow batteries (RFBs) are a promising technology for grid scale stationary energy storage to complement renewable energy systems. These batteries have a relatively low energy density; however, they offer important advantages, including: long life-time; decoupled energy (arbitrarily large electrolyte volume) and power (electrode area); high round-trip efficiency; scalability and design flexibility; fast response; and low environmental impacts. These advantages make them superior to many energy storage technologies for stationary applications [1-4]. Among the various types of RFBs, vanadium RFBs (VRFBs) are an emerging technology for grid scale energy storage and the integration of renewable energy generation [5]. The membrane is a key component of a VRFB that separates the two half-cell electrolytes and prevents cross-mixing, while allowing the transport of ions during charge-discharge cycles [6]. The VRFB membrane should exhibit low vanadium ion permeability to minimize self-discharge, low cost, and long‐term chemical stability under normal operating conditions. A high proton conductivity and low vanadium ion crossover are known to improve the efficiency of VRFBs [6-7]. In this study, we present a novel composite Nafion based membrane that results in a significant increase in the VRFB performance. The composite membrane has been characterized for its chemical, structural, and thermal properties using appropriate analytical techniques. The battery performance was evaluated in a flow cell using a ‘zero-gap’ design with an electrode area of 5 cm2. The electrolytic solution, 1.6 M VOSO4 in 3 M H2SO4, was circulated through the cell. Thermally treated carbon papers were used as the cathode and anode electrodes. For charge-discharge experiments, a constant current density (10 to 80 mA cm−2) was applied with upper and lower voltage cut-offs of 1.65 and 0.8 V, respectively. The stability of the battery using the composite membrane was evaluated over 100 cycles. Figures 1 and 2 show the energy efficiency and capacity retention during 100 charge-discharge cycles. The results reveal that the energy efficiency was improved from 51% to 63% by using the composite membrane. In addition, the charge-discharge capacity and capacity retention improved by around 200% and 25%, respectively. This improvement can be attributed to a higher proton conductivity and lower vanadium permeability of the composite membrane. References: [1] M. Skyllas-Kazacos, L. Cao, M. Kazacos, N. Kausar, A. Mousa, Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review, ChemSusChem. 9 (2016) 1521–1543. [2] A.K. Singh, M. Pahlevaninezhad, N. Yasri, E. Roberts, Degradation of Carbon Electrodes in the All-Vanadium Redox Flow Battery, ChemSusChem. (2021). [3] K.E. Rodby, T.J. Carney, Y. Ashraf Gandomi, J.L. Barton, R.M. Darling, F.R. Brushett, Assessing the levelized cost of vanadium redox flow batteries with capacity fade and rebalancing, J. Power Sources. 460 (2020) 227958. [4] M. Pahlevaninezhad, P. Leung, M. Pahlevani, F. C. Walsh, C. Ponce de Leon, and E. P. L. Roberts, Experimental and Computational Studies of Disperse Blue-1 in Organic Non-Aqueous Redox Flow Batteries, J. Power Sources, Volume 500, 15 July 2021, 229942. [5] X.Z. Yuan, C. Song, A. Platt, N. Zhao, H. Wang, H. Li, K. Fatih, D. Jang, A review of all-vanadium redox flow battery durability: Degradation mechanisms and mitigation strategies, Int. J. Energy Res. (2019). https://doi.org/10.1002/er.4607. [6] X. Li, H. Zhang, Zh. Mai, H. Zhang, I. Vankelecom, Ion exchange membranes for vanadium redox flow battery (VRB) applications, Energy Environ. Sci., 2011, 4, 1147. [7] L. Yu, F. Lin, L. Xua, J. Xi, A recast Nafion/graphene oxide composite membrane for advanced vanadium redox flow batteries, RSC Adv., 2016, 6, 3756. Figure 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.