Identifying groups of variables that may be large simultaneously amounts to finding out which joint tail dependence coefficients of a multivariate distribution are positive. The asymptotic distribution of a vector of nonparametric, rank-based estimators of these coefficients justifies a stopping criterion in an algorithm that searches the collection of all possible groups of variables in a systematic way, from smaller groups to larger ones. The issue that the tolerance level in the stopping criterion should depend on the size of the groups is circumvented by the use of a conditional tail dependence coefficient. Alternatively, such stopping criteria can be based on limit distributions of rank-based estimators of the coefficient of tail dependence, quantifying the speed of decay of joint survival functions. Numerical experiments indicate that the algorithm's effectiveness for detecting tail-dependent groups of variables is highest when paired with a criterion based on a Hill-type estimator of the coefficient of tail dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.