Mitochondrial dysfunction represents a critical step during the pathogenesis of Parkinson disease (PD) and increasing evidence suggests abnormal mitochondrial dynamics and quality control as important underlying mechanisms. The VPS35 gene, encoding a key component of the retromer complex, is the third autosomal-dominant gene associated with PD. However, how VPS35 mutations may lead to neurodegeneration remains unclear. Here we demonstrate that PD-associated VPS35 mutations caused mitochondrial fragmentation and cell death in cultured neurons in vitro, in mouse substantia nigra neurons in vivo, and in human fibroblasts from PD patient bearing the D620N mutation. VPS35-induced mitochondrial deficits and neuronal dysfunction could be prevented by inhibition of mitochondrial fission. VPS35 mutation caused increased interactions with DLP1 which enhanced mitochondrial DLP1 complex turnover via mitochondria-derived vesicles-dependent trafficking to lysosomes for degradation. Importantly, oxidative stress increased the VPS35–DLP1 interaction which was also increased in the brains of sporadic PD cases. These results revealed a novel cellular mechanism for the involvement of VPS35 in mitochondrial fission, dysregulation of which is likely involved in the pathogenesis of familial, and possibly sporadic, PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.