Paraneoplastic conditions such as cancer cachexia are often exacerbated by chemotherapy, which affects the patient’s quality of life as well as the response to therapy. The aim of this narrative review was to overview the body-composition-related changes and molecular effects of different chemotherapy agents used in cancer treatment on skeletal-muscle remodeling. A literature search was performed using the Web of Science, Scopus, and Science Direct databases and a total of 77 papers was retrieved. In general, the literature survey showed that the molecular changes induced by chemotherapy in skeletal muscle have been studied mainly in animal models and mostly in non-tumor-bearing rodents, whereas clinical studies have essentially assessed changes in body composition by computerized tomography. Data from preclinical studies showed that chemotherapy modulates several molecular pathways in skeletal muscle, including the ubiquitin–proteasome pathway, autophagy, IGF-1/PI3K/Akt/mTOR, IL-6/JAK/STAT, and NF-κB pathway; however, the newest chemotherapy agents are underexplored. In conclusion, chemotherapy exacerbates skeletal-muscle wasting in cancer patients; however, the incomplete characterization of the chemotherapy-related molecular effects on skeletal muscle makes the development of new preventive anti-wasting strategies difficult. Therefore, further investigation on molecular mechanisms and clinical studies are necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.