Stimulated emission depletion (STED) fluorescence microscopy squeezes an excited spot well below the wavelength scale using a doughnut-shaped depletion beam. To generate a doughnut, a scale-free vortex phase modulation (2D-STED) is often used because it provides maximal transverse confinement and radial-aberration immunity (RAI) to the central dip. However, RAI also means blindness to a defocus term, making the axial origin of fluorescence photons uncertain within the wavelength scale provided by the confocal detection pinhole. Here, to reduce the uncertainty, we perturb the 2D-STED phase mask so as to change the sign of the axial concavity near focus, creating a dilated dip. By providing laser depletion power, the dip can be compressed back in three dimensions to retrieve lateral resolution, now at a significantly higher contrast. We test this coherent-hybrid STED (CH-STED) mode in x-y imaging of complex biological structures, such as the dividing cell. The proposed strategy creates an orthogonal direction in the STED parametric space that uniquely allows independent tuning of resolution and contrast using a single depletion beam in a conventional (circular polarization-based) STED setup.
ATRX is a chromatin remodeller that maintains telomere homeostasis. Loss of ATRX is described in approximately 10% of pancreatic neuroendocrine tumours (PanNETs) and associated with poorer prognostic features. Here, we present a genetically engineered mouse model (GEMM) addressing the role of Atrx loss (AtrxKO) in pancreatic β cells, evaluating a large cohort of ageing mice (for up to 24 months (mo.)). Atrx loss did not cause PanNET formation but rather resulted in worsening of ageing-related pancreatic inflammation and endocrine dysfunction in the first year of life. Histopathological evaluation highlighted an exacerbated prevalence and intensity of pancreatic inflammation, ageing features, and hepatic steatosis in AtrxKO mice. Homozygous floxed mice presented hyperglycaemia, increased weights, and glucose intolerance after 6 months, but alterations in insulinaemia were not detected. Floxed individuals presented an improper growth of their pancreatic endocrine fraction that may explain such an endocrine imbalance. A pilot study of BRACO-19 administration to AtrxKO mice resulted in telomere instability, reinforcing the involvement of Atrx in the maintenance of β cell telomere homeostasis. Thereby, a non-obese dysglycaemic GEMM of disrupted Atrx is here presented as potentially useful for metabolic studies and putative candidate for inserting additional tumourigenic genetic events.
Resolution in microscopy is not limited by diffraction as long as a nonlinear sample response is exploited. In a paradigmatic example, stimulated-emission depletion (STED) fluorescence microscopy fundamentally 'breaks' the diffraction limit by using a structured optical pattern to saturate depletion on a previously excited sample area. Two-dimensional (2D) STED, the canonical low-noise STED mode, structures the STED beam by using a vortex phase mask, achieving a significant lateral resolution improvement over confocal fluorescence microscopy. However, axial resolution and optical sectioning remain bound to diffraction. Here we use a tunable coherent-hybrid (CH) beam to improve optical sectioning, markedly reducing background fluorescence. CH-STED, which inherits the 2D-STED immunity to spherical aberration, diversifies the depletion strategy, allowing an optimal balance between two key metrics (lateral resolution and background suppression) to be found. CH-STED is used to perform high-contrast imaging of complex biological structures, such as the mitotic spindle and the neuron cell body.
DNA damage response (DDR) during interphase involves active signalling and repair to ensure genomic stability. However, how mitotic cells respond to DNA damage remains poorly understood. Supported by correlative live-/fixed-cell microscopy analysis we found that mitotic cells exposed to several cancer chemotherapy compounds acquire and signal DNA damage, regardless of how they interact with DNA. In-depth analysis upon long-term DNA damage during mitosis revealed a spindle assembly checkpoint (SAC)-dependent, but DDR-independent, mitotic delay. This delay was due to the presence of misaligned chromosomes that ultimately satisfy the SAC and missegregate, leading to micronuclei formation. Mechanistically, we show that long-term mitotic DNA damage specifically stabilizes kinetochore-microtubule attachments in cancer cells, causing the missegregation of polar chromosomes due to the action of arm-ejection forces by chromokinesins. Overall, these findings unveil that long-term therapeutic DNA damage regimens contribute to genomic instability through a surprising link between the stabilization of kinetochore-microtubule attachments and chromokinesin-mediated missegregation of polar chromosomes in cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.