SummaryOne of the main virulence factors of the pathogenic bacterium Streptococcus pneumoniae is the capsule, present at the bacterial surface, surrounding the entire cell. Virtually all the 90 different capsular serotypes of S. pneumoniae, which vary in their chemical composition, express two conserved proteins, Wzd and Wze, which regulate the rate of the synthesis of capsule. In this work, we show that Wzd, a membrane protein, and Wze, a cytoplasmic tyrosine kinase, localize at the bacterial division septum, when expressed together in pneumococcal cells, without requiring the presence of additional proteins encoded in the capsule operon. The interaction between the two proteins and their consequent septal localization was dependent on a functional ATP binding domain of Wze. In the absence of either Wzd or Wze, capsule was still produced, linked to the cell surface, but it was absent from the division septum. We propose that Wzd and Wze are spatial regulators of capsular polysaccharide synthesis and, in the presence of ATP, localize at the division site, ensuring that capsule is produced in co-ordination with cell wall synthesis, resulting in full encapsulation of the pneumococcal cells.
Genome analysis showed homologous genes in all organisms known to accumulate DIP and for which genome sequences were available. In most cases, the two activities (L-myo-inositol-1-P cytidylyltransferase and DIPP synthase) were fused in a single gene product, but separate genes were predicted in Aeropyrum pernix, Thermotoga maritima, and Hyperthermus butylicus. Additionally, using L-myo-inositol-1-phosphate labeled on C-1 with carbon 13, the stereochemical configuration of all the metabolites involved in DIP synthesis was established by NMR analysis. The two inositol moieties in DIP had different stereochemical configurations, in contradiction of previous reports. The use of the designation di-myo-inositol-1,3-phosphate is recommended to facilitate tracing individual carbon atoms through metabolic pathways.
We have constructed a set of plasmids that allow efficient expression of both N- and C-terminal fusions of proteins of interest to fluorescent proteins mCherry, Citrine, CFP and GFP in the Gram-positive pathogen Streptococcus pneumoniae. In order to improve expression of the fluorescent fusions to levels that allow their detection by fluorescence microscopy, we have introduced a 10 amino acid tag, named i-tag, at the N-terminal end of the fluorescent proteins. This caused increased expression due to improved translation efficiency and did not interfere with the protein localization in pneumococcal bacteria. Localizing fluorescent derivatives of FtsZ, Wzd and Wze in dividing bacteria validated the developed tools. The availability of the new plasmids described in this work should greatly facilitate studies of protein localization in an important clinical pathogen.
Synthesis of the capsular polysaccharide, a major virulence factor for many pathogenic bacteria, is required for bacterial survival within the infected host. In Streptococcus pneumoniae, Wze, an autophosphorylating tyrosine kinase, and Wzd, a membrane protein required for Wze autophosphorylation, co-localize at the division septum and guarantee the presence of capsule at this subcellular location. To determine how bacteria regulate capsule synthesis, we studied pneumococcal proteins that interact with Wzd and Wze using bacterial two hybrid assays and fluorescence microscopy. We found that Wzd interacts with Wzg, the putative ligase that attaches capsule to the bacterial cell wall, and recruits it to the septal area. This interaction required residue V56 of Wzd and both the transmembrane regions and DNA-PPF domain of Wzg. When compared to the wild type, Wzd null pneumococci lack capsule at midcell, bind the peptidoglycan hydrolase LytA better and are more susceptible to LytA-induced lysis, and are less virulent in a zebrafish embryo infection model. In this manuscript, we propose that the Wzd/Wze pair guarantees full encapsulation of pneumococcal bacteria by recruiting Wzg to the division septum, ensuring that capsule attachment is coordinated with peptidoglycan synthesis. Impairing the encapsulation process, at localized subcellular sites, may facilitate elimination of bacteria by strategies that target the pneumococcal peptidoglycan.
The understanding of how Gram-positive bacteria divide and ensure the correct localization of different molecular machineries, such as those involved in the synthesis of the bacterial cell surface, is crucial to design strategies to fight bacterial infections. In order to determine the correct subcellular localization of fluorescent proteins in Streptococcus pneumoniae, we have previously described tools to express derivatives of four fluorescent proteins, mCherry, Citrine, CFP and GFP, to levels that allow visualization by fluorescence microscopy, by fusing the first ten amino acids of the S. pneumoniae protein Wze (the i-tag), upstream of the fluorescent protein. Here, we report that these tools can also be used in other Gram-positive bacteria, namely Lactococcus lactis, Staphylococcus aureus and Bacillus subtilis, possibly due to optimized translation rates. Additionally, we have optimized the i-tag by testing the effect of the first ten amino acids of other pneumococcal proteins in the increased expression of the fluorescent protein Citrine. We found that manipulating the structure and stability of the 5′ end of the mRNA molecule, which may influence the accessibility of the ribosome, is determinant to ensure the expression of a strong fluorescent signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.