A conventional technique of protein analysis is laborious and costly. One rapid method used to estimate protein content is near infrared spectroscopy (NIRS), but the cost is relatively expensive. Therefore, it is necessary to find a cheaper alternative measurement such as measuring the bioelectrical properties. This preliminary study is a new rapid method for classified modeling of wheat flour protein content based on the bioelectrical properties. A backpropagation artificial neural network (ANN) was developed to classify the protein content of wheat flour. ANN input were bioelectrical properties, namely capacitance, and resistance and output was a type of the flour, namely hard, medium and soft flour. The result showed that the ANN model could classify the various type of flour. The best ANN model produces a mean square error (MSE) and regression correlation (R) of 0.0399 and 0.9774 respectively. This ANN model could classify the protein content of wheat flour based on the bioelectrical properties and have the potential to be used as a basic instrument to estimate the protein content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.