Agro-industrial wastes are produced in large quantities around the world from the processing and manufacturing of food and beverages. The disposal of these wastes into the environment leads to damage to ecosystems owing to their composition rich in organic matter. In this context it may be noted that the brewing industry, whose production process includes processing steps and fermentation of vegetable raw materials such as barley and/or other grains used as adjuncts and hops, generates various byproducts. The worldwide consumption of these beverages and the current model of breweries, which includes production on a large scale, lead to the generation of large amounts of brewery waste, namely spent grain, hot trub and residual yeast. Owing to its composition, these residues exhibit significant potential for application in bioprocess technologies. In this study the three residues mentioned had their composition determined as a function of moisture, ash, total organic carbon (TOC), total and soluble nitrogen, reducing sugar and soluble free amino nitrogen. Moreover, the residues were characterized for total acidity, pH and chemical oxygen demand (COD) of total and soluble fractions. The three residues evaluated had high moisture content (>80%) and high organic matter content (TOC and COD,~50% and >1000 mg/g, respectively), which can highlights the significant protein fraction (almost 50% for hot trub and residual yeast), suggesting the possibility of using these wastes for recovery.
The objective of this research was to evaluate the air stripping technology for the removal of ammonia from landfill leachates. In this process, pH, temperature, airflow rate and operation time were investigated. Furthermore, the relationship between the leachate alkalinity and the ammonia removal efficiency during the process was studied. The leachate used in the tests was generated in the Gramacho Municipal Solid Waste Landfill (Rio de Janeiro State, Brazil). The best results were obtained with a temperature of 60(o)C, and they were independent of the pH value for 7 h of operation (the ammonia nitrogen removal was greater than 95%). A strong influence of the leachate alkalinity on the ammonia nitrogen removal was observed; as the alkalinity decreased, the ammonia concentration also decreased because of prior CO2 removal, which increased the pH and consequently favored the NH3 stripping. The air flow rate, in the values evaluated (73, 96 and 120 L air.h(-1).L(-1) of leachate), did not influence the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.