Shoot branching is inhibited by auxin transported down the stem from the shoot apex. Auxin does not accumulate in inhibited buds and so must act indirectly. We show that mutations in the MAX4 gene of Arabidopsis result in increased and auxin-resistant bud growth. Increased branching in max4 shoots is restored to wild type by grafting to wild-type rootstocks, suggesting that MAX4 is required to produce a mobile branch-inhibiting signal, acting downstream of auxin. A similar role has been proposed for the pea gene, RMS1. Accordingly, MAX4 and RMS1 were found to encode orthologous, auxin-inducible members of the polyene dioxygenase family.Supplemental material is available at http://www.genesdev. org.Received December 6, 2002; revised version accepted March 20, 2003. Variation in shoot branching is an important cause of diversity in plant form. Individual species have a characteristic branching pattern, which can change through the life cycle in response to developmental cues and to environmental conditions (Cline 1991;Beveridge et al. 2003). Branching control therefore requires the integration of many signals, both known and unknown.Shoot branches arise from axillary meristems that form in the axils of leaves on the primary shoot axis. The axillary meristems themselves initiate leaves to form a bud. Bud growth can arrest but has the potential to reactivate to produce a shoot branch. Removal of the primary shoot apex results in activation of arrested axillary buds. The ability of the shoot apex to repress axillary bud growth is termed apical dominance. Thimann and Skoog (1933) reported that a compound, derived from the shoot apex, and later identified as auxin (indole-3-acetic acid), could inhibit the growth of lateral buds when applied to the stump of a decapitated plant. Subsequent work has provided multiple lines of evidence in support of auxinmediated bud inhibition in planta. However, a second messenger must relay the auxin signal into the bud because apically derived auxin is not transported into buds (Morris 1977) and exogenous auxin applied directly to buds does not inhibit their growth (Cline 1996).One model proposes that the effect of auxin on bud growth is mediated by cytokinin. Cytokinin can directly promote bud growth (Cline 1991); transgenic plants with increased auxin levels have reduced cytokinin levels (Eklö f et al. 2000), and cytokinin export from roots increases after decapitation, with this increase being abolished by application of auxin to the decapitated stump (Bangerth 1994). However, there is also good evidence for novel regulators of bud growth downstream of auxin. The ramosus mutants (rms1 to rms5) of pea (for reviews, see Beveridge 2000; Beveridge et al. 2003) have increased lateral branching, but this phenotype can be almost completely rescued by grafting a wild-type (WT) rootstock to an rms1, rms2, or rms5 mutant scion. Such grafting studies show that RMS1 and RMS5 are required for the production of a graft transmissible signal that moves from root to shoot and inhibits branching ...
In Pisum sativum, the RAMOSUS genes RMS1, RMS2, and RMS5 regulate shoot branching via physiologically defined mobile signals. RMS1 is most likely a carotenoid cleavage enzyme and acts with RMS5 to control levels of an as yet unidentified mobile branching inhibitor required for auxin inhibition of branching. Our work provides molecular, genetic, and physiological evidence that RMS1 plays a central role in a shoot-to-root-to-shoot feedback system that regulates shoot branching in pea. Indole-3-acetic acid (IAA) positively regulates RMS1 transcript level, a potentially important mechanism for regulation of shoot branching by IAA. In addition, RMS1 transcript levels are dramatically elevated in rms3, rms4, and rms5 plants, which do not contain elevated IAA levels. This degree of upregulation of RMS1 expression cannot be achieved in wild-type plants by exogenous IAA application. Grafting studies indicate that an IAA-independent mobile feedback signal contributes to the elevated RMS1 transcript levels in rms4 plants. Therefore, the long-distance signaling network controlling branching in pea involves IAA, the RMS1 inhibitor, and an IAA-independent feedback signal. Consistent with physiological studies that predict an interaction between RMS2 and RMS1, rms2 mutations appear to disrupt this IAA-independent regulation of RMS1 expression.
Physiological and genetic studies with the ramosus (rms) mutants in garden pea (Pisum sativum) and more axillary shoots (max) mutants in Arabidopsis (Arabidopsis thaliana) have shown that shoot branching is regulated by a network of long-distance signals. Orthologous genes RMS1 and MAX4 control the synthesis of a novel graft-transmissible branching signal that may be a carotenoid derivative and acts as a branching inhibitor. In this study, we demonstrate further conservation of the branching control system by showing that MAX2 and MAX3 are orthologous to RMS4 and RMS5, respectively. This is consistent with the longstanding hypothesis that branching in pea is regulated by a novel long-distance signal produced by RMS1 and RMS5 and that RMS4 is implicated in the response to this signal. We examine RMS5 expression and show that it is more highly expressed relative to RMS1, but under similar transcriptional regulation as RMS1. Further expression studies support the hypothesis that RMS4 functions in shoot and rootstock and participates in the feedback regulation of RMS1 and RMS5 expression. This feedback involves a second novel long-distance signal that is lacking in rms2 mutants. RMS1 and RMS5 are also independently regulated by indole-3-acetic acid. RMS1, rather than RMS5, appears to be a key regulator of the branching inhibitor. This study presents new interactions between RMS genes and provides further evidence toward the ongoing elucidation of a model of axillary bud outgrowth in pea.
The structure of the yeast RNA polymerase (pol) III was investigated by exhaustive two-hybrid screening using a library of random genomic fragments fused to the Gal4 activation domain. This procedure allowed us to identify contacts between individual polypeptides, localize the contact domains, and deduce a protein-protein interaction map of the multisubunit enzyme. In all but one case, pol III subunits were able to interact in vivo with one or sometimes two partner subunits of the enzyme or with subunits of TFIIIC. Four subunits that are common to pol I, II, and III (ABC27, ABC14.5, ABC10␣, and ABC10), two that are common to pol I and III (AC40 and AC19), and one pol III-specific subunit (C11) can associate with defined regions of the two large subunits. These regions overlapped with highly conserved domains. C53, a pol III-specific subunit, interacted with a 37-kDa polypeptide that copurifies with the enzyme and therefore appears to be a unique pol III subunit (C37). Together with parallel interaction studies based on dosagedependent suppression of conditional mutants, our data suggest a model of the pol III preinitiation complex.Eukaryotic transcription is mediated by large multiprotein complexes in which each of the three nuclear RNA polymerases (pols) interact with their cognate preinitiation factors. The pols themselves have been well characterized in terms of subunit composition, especially in the case of the yeast Saccharomyces cerevisiae. However, the spatial organization of the enzyme subunits and the way they interact with preinitiation complexes or with other components of the yeast nucleus are still poorly understood. Electron microscopy so far has provided the most accurate structural description of the Escherichia coli enzyme (1) and of yeast pol I (2, 3) and II (refs. 4-6 and references therein), revealing a striking similarity in the overall shape of these enzymes. In the case of yeast pol I, six subunits (or domains thereof) were localized by immunoelectron microscopy of antibody-labeled enzymes (2, 7). Sitespecific protein-DNA crosslinking also shed light on the general architecture of pol II (8, 9) and III (10-12) transcription complexes.These studies are still far from providing a comprehensive picture of the structural organization of the eukaryotic pols. Alternatively, each subunit can be tested for its ability to selectively associate with other subunits of the same heteromultimeric complex. In the case of human pol II, an in vitro test based on glutathione S-transferase pull-down assays has suggested numerous contacts within the pol II complex (13). In Schizosaccharomyces pombe, studies based on Far Western blotting, which were in some cases supported by independent protein-protein crosslinking studies, suggested that the two large pol II subunits interact with all of the other smaller subunits (9, 14). The two-hybrid system is an alternative to biochemical methods that allows one to detect interactions between proteins in the cellular context of the yeast nucleus (ref. 15 and ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.