More than 50 y of research have provided great insight into the physiology, metabolism, and molecular biology of Salmonella enterica serovar Typhimurium (S. Typhimurium), but important gaps in our knowledge remain. It is clear that a precise choreography of gene expression is required for Salmonella infection, but basic genetic information such as the global locations of transcription start sites (TSSs) has been lacking. We combined three RNAsequencing techniques and two sequencing platforms to generate a robust picture of transcription in S. Typhimurium. Differential RNA sequencing identified 1,873 TSSs on the chromosome of S. Typhimurium SL1344 and 13% of these TSSs initiated antisense transcripts. Unique findings include the TSSs of the virulence regulators phoP, slyA, and invF. Chromatin immunoprecipitation revealed that RNA polymerase was bound to 70% of the TSSs, and two-thirds of these TSSs were associated with σ 70 (including phoP, slyA, and invF) from which we identified the −10 and −35 motifs of σ 70 -dependent S. Typhimurium gene promoters. Overall, we corrected the location of important genes and discovered 18 times more promoters than identified previously. S. Typhimurium expresses 140 small regulatory RNAs (sRNAs) at early stationary phase, including 60 newly identified sRNAs. Almost half of the experimentally verified sRNAs were found to be unique to the Salmonella genus, and <20% were found throughout the Enterobacteriaceae. This description of the transcriptional map of SL1344 advances our understanding of S. Typhimurium, arguably the most important bacterial infection model. transcriptional mapping | noncoding RNA | posttranscriptional regulation | pathogenicity | genome sequence
Salmonella enterica serovar Typhimurium is arguably the world’s best-understood bacterial pathogen. However, crucial details about the genetic programs used by the bacterium to survive and replicate in macrophages have remained obscure because of the challenge of studying gene expression of intracellular pathogens during infection. Here, we report the use of deep sequencing (RNA-seq) to reveal the transcriptional architecture and gene activity of Salmonella during infection of murine macrophages, providing new insights into the strategies used by the pathogen to survive in a bactericidal immune cell. We characterized 3583 transcriptional start sites that are active within macrophages, and highlight 11 of these as candidates for the delivery of heterologous antigens from Salmonella vaccine strains. A majority (88%) of the 280 S. Typhimurium sRNAs were expressed inside macrophages, and SPI13 and SPI2 were the most highly expressed pathogenicity islands. We identified 31 S. Typhimurium genes that were strongly up-regulated inside macrophages but expressed at very low levels during in vitro growth. The SalComMac online resource allows the visualisation of every transcript expressed during bacterial replication within mammalian cells. This primary transcriptome of intra-macrophage S.-Typhimurium describes the transcriptional start sites and the transcripts responsible for virulence traits, and catalogues the sRNAs that may play a role in the regulation of gene expression during infection.
Salmonella enterica serovar Typhimurium is an intracellular pathogen that can survive and replicate within macrophages. One of the host defense mechanisms that Salmonella encounters during infection is the production of reactive oxygen species by the phagocyte NADPH oxidase. Among them, hydrogen peroxide (H 2 O 2 ) can diffuse across bacterial membranes and damage biomolecules. Genome analysis allowed us to identify five genes encoding H 2 O 2 degrading enzymes: three catalases (KatE, KatG, and KatN) and two alkyl hydroperoxide reductases (AhpC and TsaA). Inactivation of the five cognate structural genes yielded the HpxF ؊ mutant, which exhibited a high sensitivity to exogenous H 2 O 2 and a severe survival defect within macrophages. When the phagocyte NADPH oxidase was inhibited, its proliferation index increased 3.7-fold. Moreover, the overexpression of katG or tsaA in the HpxF ؊ background was sufficient to confer a proliferation index similar to that of the wild type in macrophages and a resistance to millimolar H 2 O 2 in rich medium. The HpxF ؊ mutant also showed an attenuated virulence in a mouse model. These data indicate that Salmonella catalases and alkyl hydroperoxide reductases are required to degrade H 2 O 2 and contribute to the virulence. This enzymatic redundancy highlights the evolutionary strategies developed by bacterial pathogens to survive within hostile environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.