The development of a new enamine-solid-basecatalyzed (ESBC) methodology for the aldol condensation reaction is reported. Solid base catalysts [nonactivated and activated magnesium oxide (MgO and MgO act ) and calcium oxide (CaO and CaO act ), a hydrotalcite (HT), and a porous metal oxide (PMO)] were investigated as safer and greener alternatives to previously reported catalytic systems. Multiple reaction parameters (temperature, solvent, time, and catalyst loading) were investigated todetermine optimal conditions for the practitioner to employ in the synthesis of C-glycosides. The optimized reaction conditions provided highly functionalized (E)α,βunsaturated ketones from unprotected C-glycosides in good to excellent yields. Moreover, the ESBC methodology is applicable to a wide range of aromatic aldehydes that feature electron-rich and electron-poor moieties, as well as sterically bulky groups. Lastly, the recyclability of the MgO catalyst was demonstrated.
Polyfunctional indoles bearing substituents at C5 and C6 are prevalent in natural products, pharmaceuticals, agrochemicals, and materials. Owing to the remoteness of the C5 and C6 positions, indoles of this family can be difficult to prepare, and often require multistep syntheses. Herein, we describe a concise process that converts simple derivatives of tyrosine into 5,6-difunctionalized indoles by direct oxidation of C-H, N-H, and O-H bonds. Our work draws inspiration from the biosynthetic polymerization of tyrosine to make melanin pigments, but makes an important departure to provide well-defined indole heterocycles.
A dysfunctional epidermal barrier, which may be associated with mutations in the filaggrin gene in genetically predisposed individuals or harmful effects of environmental agents and allergens, contributes to the development of atopic dermatitis (AD) due to an interplay between the epithelial barrier, immune defence and the cutaneous microbiome. The skin of patients with AD is frequently over‐colonized by biofilm‐growing Staphylococcus aureus, especially during flares, causing dysbiosis of the cutaneous microbiota and a decrease in bacterial diversity that inversely correlates with AD severity. Specific changes in the skin microbiome can be present before clinical AD onset in infancy. Additionally, local skin anatomy, lipid content, pH, water activity and sebum secretion differ between children and adults and generally correlate with the predominant microbiota. Considering the importance of S. aureus in AD, treatments aimed at reducing over‐colonization to rebalance microbial diversity may help manage AD and reduce flares. Anti‐staphylococcal interventions in AD will contribute to a decrease in S. aureus superantigens and proteases that cause damage and inflammation of the skin barrier while concomitantly increasing the proportion of commensal bacteria that secrete antimicrobial molecules that protect healthy skin from invading pathogens. This review summarizes the latest data on targeting skin microbiome dysbiosis and S. aureus over‐colonization to treat AD in adults and children. Indirect AD therapies, including emollients ‘plus’, anti‐inflammatory topicals and monoclonal antibodies, may have an impact on S. aureus and help control bacterial diversity. Direct therapies, including antibacterial treatments (antiseptics/topical or systemic antibiotics), and innovative treatments specifically targeting S. aureus (e.g. anti‐S. aureus endolysin, and autologous bacteriotherapy), may be effective alternatives to mitigate against an increase in microbial resistance and allow a proportionate increase in the commensal microbiota.
A variety of unprotected C-glycosidic ketones were employed in a novel enamine-solid-base catalyzed (ESBC) aldol condensation to expand the scope and scalability of a previously reported reaction. The starting ketones were obtained from unprotected pyranoses and furanoses following Lubineau's method via a Knoevenagel condensation. The aldol condensation reaction of the C-glycosidic ketones was performed with a nontoxic and abundant amino acid, L-proline, along with magnesium oxide (MgO) as a recyclable and sustainable catalyst. The enamine-solid-base catalyzed aldol condensations provided the corresponding (E)-α,β-unsaturated ketones in excellent isolated yields (91−100%).
Atopic dermatitis (AD) is a chronic skin condition affecting an increasing number of children and adults whose quality of life is impacted by chronic itch and pain. It is characterized by an altered epidermal barrier, skin inflammation, and skin microbiome dysbiosis particularly over-colonization of Staphylococcus aureus. The efficacy and tolerance of a cream containing a S. aureus-targeting technology (endolysin) was assessed in an open-label, two-week study in children and adults with mild-to-moderate atopic dermatitis. A total of 43 patients ranging from 7 months to 57 years old were included and all patients finished the study without any tolerance problem. Disease severity, measured with SCORAD, quickly reduced by 43% in 7 days and by 68 % in 14 days. The benefit was perceived by the whole panel with a marked improvement in overall QoL. This study shows the efficacy of a highly specific S. aureus-targeted technology in alleviating symptoms and improving QoL in children and adults with atopic dermatitis. It could also be beneficial in reducing and preventing flares in subjects with S. aureus load due to its good tolerance and specific action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.