[1] The Boiling Lake of Dominica has exhibited stable high-temperature behavior for at least 150 a. This stability is punctuated by occasional crises involving rapid filling and draining of the lake and changes in water temperature. The most recent such crisis occurred in December 2004 to April 2005. Using the results of previous theoretical and experimental work on analogue models, we present a combined thermal, hydrological, and fluid mechanical model of the Boiling Lake. This reveals that the lake appears to be suspended above the local water table by a constant supply of rising steam bubbles sourced from the boiling of groundwater near an igneous intrusion. The bubbles condense in the Boiling Lake, maintaining the temperature at $90°C. The geometry of the lakeconduit system provides a mechanism for instability, with a denser liquid lake overlying a bubbly fractured permeable conduit. Following a sufficiently large perturbation, the whole lake rapidly drains until the surface is at the local water table level. The persistent gas supply then reinitiates filling. We propose that local seismic activity may have caused shock nucleation of bubbles within the conduit and triggered the instability of the Boiling Lake.
A meta-analysis of three national databases determined the potential linkage between soil and surface and groundwater enrichment with phosphorus (P). Soil P was enriched especially under dairying commensurate with an increase in cow numbers and the tonnage of P-fertilizers sold. Median P concentrations were enriched in surface waters receiving runoff from industrial and dairy land uses, and in groundwater beneath dairying especially in those aquifers with gravel or sand lithology, irrespective of groundwater redox status. After geographically pairing surface and groundwater sites to maximize the chance of connectivity, a subset of sites dominated by aquifers with gravel and sand lithology showed increasing P concentrations with as little as 10 years data. These data raise the possibility that groundwater could contribute much P to surface water if: there is good connectivity between surface and groundwater, intensive land use occurs on soils prone to leaching, and leached-P is not attenuated through aquifers. While strategies are available to mitigate P loss from intensive farming systems in the short-term, factors such as enriched soils and slow groundwater may mean that despite their use, there will be a long-term input (viz. legacy), that may sustain surface water P enrichment. To avoid poor surface water quality, management and planning may need to consider the connectivity and characteristics of P in soil-groundwater-surface water systems.(KEY TERMS: base flow; filtered reactive phosphorus; lag time; legacy; management; storm flow.)
Groundwater is a vital component of rural and urban water supplies in New Zealand. Although extensive monitoring of chemical and physical properties is conducted due to the high demand for this valuable resource, current information on its bacterial content is limited. However, bacteria provide an immense contribution to drive the biogeochemical processes in the groundwater ecosystem as in any other ecosystem. Therefore, a proper understanding of bacterial diversity is crucial to assess the effectiveness of groundwater management policies. In this study, we investigated the bacterial community structure in NZ groundwater at a national scale using the terminal restriction fragment length polymorphism (T-RFLP) molecular profiling tool and determined the relationships between bacterial diversity and groundwater chemistry, geological parameters and human impact. Considerable bacterial diversity was present and the community structures were strongly related to groundwater chemistry, and in particular to redox potential and human impact, reflecting their potential influence on determination of bacterial diversity. Further, the mean residence time of groundwater also showed relationships with bacterial community structure. These novel findings pertaining to community composition and its relationships with environmental parameters will provide a strong foundation for qualitative exploration of the bacterial diversity in NZ groundwater in relation to sustainable management of this valuable resource.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.