BackgroundUsher syndrome (USH) combines sensorineural deafness with blindness. It is inherited in an autosomal recessive mode. Early diagnosis is critical for adapted educational and patient management choices, and for genetic counseling. To date, nine causative genes have been identified for the three clinical subtypes (USH1, USH2 and USH3). Current diagnostic strategies make use of a genotyping microarray that is based on the previously reported mutations. The purpose of this study was to design a more accurate molecular diagnosis tool.MethodsWe sequenced the 366 coding exons and flanking regions of the nine known USH genes, in 54 USH patients (27 USH1, 21 USH2 and 6 USH3).ResultsBiallelic mutations were detected in 39 patients (72%) and monoallelic mutations in an additional 10 patients (18.5%). In addition to biallelic mutations in one of the USH genes, presumably pathogenic mutations in another USH gene were detected in seven patients (13%), and another patient carried monoallelic mutations in three different USH genes. Notably, none of the USH3 patients carried detectable mutations in the only known USH3 gene, whereas they all carried mutations in USH2 genes. Most importantly, the currently used microarray would have detected only 30 of the 81 different mutations that we found, of which 39 (48%) were novel.ConclusionsBased on these results, complete exon sequencing of the currently known USH genes stands as a definite improvement for molecular diagnosis of this disease, which is of utmost importance in the perspective of gene therapy.
Presbycusis, or age-related hearing loss (ARHL), is a major public health issue. About half the phenotypic variance has been attributed to genetic factors. Here, we assessed the contribution to presbycusis of ultrarare pathogenic variants, considered indicative of Mendelian forms. We focused on severe presbycusis without environmental or comorbidity risk factors and studied multiplex family age-related hearing loss (mARHL) and simplex/sporadic age-related hearing loss (sARHL) cases and controls with normal hearing by whole-exome sequencing. Ultrarare variants (allele frequency [AF] < 0.0001) of 35 genes responsible for autosomal dominant early-onset forms of deafness, predicted to be pathogenic, were detected in 25.7% of mARHL and 22.7% of sARHL cases vs. 7.5% of controls (P = 0.001); half were previously unknown (AF < 0.000002). MYO6, MYO7A, PTPRQ, and TECTA variants were present in 8.9% of ARHL cases but less than 1% of controls. Evidence for a causal role of variants in presbycusis was provided by pathogenicity prediction programs, documented haploinsufficiency, three-dimensional structure/function analyses, cell biology experiments, and reported early effects. We also established Tmc1N321I/+ mice, carrying the TMC1:p.(Asn327Ile) variant detected in an mARHL case, as a mouse model for a monogenic form of presbycusis. Deafness gene variants can thus result in a continuum of auditory phenotypes. Our findings demonstrate that the genetics of presbycusis is shaped by not only well-studied polygenic risk factors of small effect size revealed by common variants but also, ultrarare variants likely resulting in monogenic forms, thereby paving the way for treatment with emerging inner ear gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.