Mutations of the parkin gene are the most frequent cause of early onset autosomal recessive parkinsonism (EO-AR). Here we show that inactivation of the parkin gene in mice results in motor and cognitive deficits, inhibition of amphetamine-induced dopamine release and inhibition of glutamate neurotransmission. The levels of dopamine are increased in the limbic brain areas of parkin mutant mice and there is a shift towards increased metabolism of dopamine by MAO. Although there was no evidence for a reduction of nigrostriatal dopamine neurons in the parkin mutant mice, the level of dopamine transporter protein was reduced in these animals, suggesting a decreased density of dopamine terminals, or adaptative changes in the nigrostriatal dopamine system. GSH levels were increased in the striatum and fetal mesencephalic neurons from parkin mutant mice, suggesting that a compensatory mechanism may protect dopamine neurons from neuronal death. These parkin mutant mice provide a valuable tool to better understand the preclinical deficits observed in patients with PD and to characterize the mechanisms leading to the degeneration of dopamine neurons that could provide new strategies for neuroprotection.
To establish phenotype-genotype correlations in early-onset parkinsonism, we have compared the phenotype of a large series of 146 patients with and 250 patients without parkin mutations. Although no single sign distinguished the groups, patients with mutations had significantly earlier and more symmetrical onset, dystonia more often at onset and hyperreflexia, slower progression of the disease, and a tendency toward a greater response to levodopa despite lower doses. After forward stepwise multiple logistic regression analysis, dystonia at onset and brisk reflexes were not longer significantly different but were correlated with age at onset rather than the presence of the parkin mutation. Age at onset in carriers of parkin mutations varied as did the rate of progression of the disease: the younger the age at onset the slower the evolution. The genotype influenced the phenotype: carriers of at least one missense mutation had a higher United Parkinson's Disease Rating Scale motor score than those carrying two truncating mutations. The localization of the mutations was also important because missense mutations in functional domains of parkin resulted in earlier onset. Patients with a single heterozygous mutation had significantly later and more asymmetrical onset and more frequent levodopa-induced fluctuations and dystonia than patients with two mutations.
Parkin gene mutations are reported to be a major cause of early-onset parkinsonism (age at onset < or = 45 years) in families with autosomal recessive inheritance and in isolated juvenile-onset parkinsonism (age at onset <20 years). However, the precise frequency of parkin mutations in isolated cases is not known. In order to evaluate the frequency of parkin mutations in patients with isolated early-onset parkinsonism according to their age at onset, we studied 146 patients of various geographical origin with an age at onset < or = 45 years. All were screened for mutations in the parkin gene using semi-quantitative polymerase chain reaction combined with sequencing of the entire coding region. We identified parkin mutations in 20 patients including three new exon rearrangements and two new missense mutations. These results, taken in conjunction with those of our previous study (Lücking et al., 2000) show that parkin mutations account for at least 15% (38 out of 246) of our early-onset cases without family history, but that the proportion decreases significantly with increasing age at onset. There were no clinical group differences between parkin cases and other patients with early-onset parkinsonism. However, a single case presenting with cerebellar ataxia several years before typical parkinsonism extends the spectrum of parkin related-disease.
Mutations in the Parkin gene cause juvenile and early onset Parkinsonism. While Parkin-related disease is presumed to be an autosomal-recessive disorder, cases have been reported where only a single Parkin allele is mutated and raise the possibility of a dominant effect. In this report, we re-evaluate twenty heterozygous cases and extend the mutation screening to include the promoter and intron/exon boundaries. Novel deletion, point and intronic splice site mutations are described, along with promoter variation. These data, coupled with a complete review of published Parkin mutations, confirms that not only is recessive loss of Parkin a risk factor for juvenile and early onset Parkinsonism but that Parkin haplo-insufficiency may be sufficient for disease in some cases.
Parkin knockout (KO) mice show behavioural and biochemical changes that reproduce some of the presymptomatic aspects of Parkinson's disease, in the absence of neuronal degeneration. To provide insight into the pathogenic mechanisms underlying the preclinical stages of parkin-related parkinsonism, we searched for possible changes in the brain proteome of parkin KO mice by means of fluorescence two-dimensional difference gel electrophoresis and mass spectrometry. We identified 87 proteins that differed in abundance between wild-type and parkin KO mice by at least 45%. A high proportion of these proteins were related to energy metabolism. The levels of several proteins involved in detoxification, stress-related chaperones and components of the ubiquitin-proteasome pathway were also altered. These differences might reflect adaptive mechanisms aimed at compensating for the presence of reactive oxygen species and the accumulation of damaged proteins in parkin KO mice. Furthermore, the up-regulation of several members of the membrane-associated guanylate kinase family of synaptic scaffold proteins and several septins, including the Parkin substrate cell division control related protein 1 (CDCRel-1), may contribute to the abnormalities in neurotransmitter release previously observed in parkin KO mice. This study provides clues into possible compensatory mechanisms that protect dopaminergic neurones from death in parkin KO mice and may help us understand the preclinical deficits observed in parkinrelated parkinsonism. Keywords: knockout mice, parkin, proteomic, two-dimensional fluorescence difference gel electrophoresis. In 1998, the parkin gene was shown to be responsible for a distinct clinical and genetic entity in Japan, defined as autosomal recessive juvenile parkinsonism (Kitada et al. 1998). A series of parkin exon rearrangements and point mutations have since been identified in almost 50% of patients with familial autosomal recessive early-onset parkinsonism from different populations, and in 15% of non-familial cases (Lücking et al. 2000;Lohmann et al. 2003 Abbreviations used: AcCN, acetonitrile; CDCRel-1, cell division control related protein 1; 2D DIGE, two-dimensional difference gel electrophoresis; DTT, dithiothreitol; GTP2, glutathione S-transferase P2; IPG, immobilized pH gradient; KO, knockout; MAGUK, membraneassociated guanylate kinase; MALDI-TOF, matrix-assisted laser desorption/ionization-time of flight; MS, mass spectrometry; NSF, N-ethylmaleimide sensitive fusion protein; OTUB1, OTU-domain uba1-binding protein; PD, Parkinson's disease; PINK1, PTEN-induced kinase 1; UCH-L1, ubiquitin carboxyterminal hydrolase L1; WT, wild type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.