The return times of large Himalayan earthquakes are poorly constrained. Despite historical devastation of cities along the mountain range, definitive links between events and specific segments of the Main Frontal Thrust (MFT) are not established, and paleoseismological records have not documented the occurrence of several similar events at the same location. In east central Nepal, however, recently discovered primary surface ruptures of that megathrust in the A.D. 1255 and 1934 earthquakes are associated with flights of tectonically uplifted terraces. We present here a refined, longer slip history of the MFT's two overlapping strands (Patu and Bardibas Thrusts) in that region, based on updated geomorphic/neotectonic mapping of active faulting, two 1.3 km long shallow seismic profiles, and logging of two river-cut cliffs, three paleoseismological trenches, and several pits, with constraints from 74 detrital charcoals and 14 cosmogenic nuclide ages. The amount of hanging wall uplift on the Patu thrust since 3650 ± 450 years requires three more events than the two aforementioned. The uplift rate (8.5 ± 1.5 mm/yr), thrust dip (25°± 5°N), and apparent characteristic behavior imply 12-17.5 m of slip per event. On the Bardibas thrust, discrete pulses of colluvial deposition resulting from the coseismic growth of a flexural fold scarp suggest the occurrence of six or seven paleo-earthquakes in the last 4500 ± 50 years. The coeval rupture of both strands during great Himalayan earthquakes implies that in eastern Nepal, the late Holocene return times of such earthquakes probably ranged between 750 ± 140 and 870 ± 350 years.
We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting.
Located at the northeastern corner of the Adria microplate, the Alps‐Dinarides junction represents a key region for understanding how the Adria microplate interacts with stable Europe. However, little is known on how the present‐day deformation imposed by the rotation of the Adria microplate is absorbed across the Dinarides. Using morphotectonic analysis based on satellite and aerial images, accurate topographical maps, and digital elevation models combined with field investigations, we mapped in detail the three main active faults of the Northern Dinarides. Geomorphic and geological cumulative displacements ranging from a few meters to several kilometers have been identified on those faults and dated for the most recent ones using 36Cl exposure dating. Those results yielded a total right‐lateral motion of 3.8 ± 0.7 mm/yr oriented N317. Comparing our results with the motion expected from Adria rotation models suggests that the Northern Dinarides absorbs most of the predicted Adria‐Eurasia motion, thus representing the eastern boundary of the microplate. However, a significant E‐W component is lacking, suggesting that part of the stress imposed by the microplate rotation is transferred farther to the east. Finally, bounds placed on the Plio‐Pleistocene kinematics confirm that faulting onset occurred during the Early Pliocene and evidence a significant kinematic change at the Early/Middle Pleistocene boundary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.