Mutation of the Arg120 residue in the human alphaB-crystallin sequence has been shown to be associated with a significant ability to aggregate in cultured cells and have an increased oligomeric size coupled to a partial loss of the chaperone-like activity in vitro. In the present study, static and dynamic light scattering, small-angle X-ray scattering, and size exclusion chromatography were used to follow the temperature and pressure induced structural transitions of human alphaB-crystallin and its R120G, R120D, and R120K mutants. The wild type alphaB-crystallin was known to progressively increase in size with increasing temperature, from 43 to 60 degrees C, before aggregating after 60 degrees C. The capacity to increase in size with temperature or pressure, while remaining soluble, had disappeared with the R120G mutant and was found to be reduced for the R120K and R120D mutants. The R120K mutant, which preserves the particle charge, was the less impaired. The deficit of quaternary structure plasticity was well correlated with the decrease in chaperone-like activity previously observed. However, the mutant ability to exchange subunits, measured with a novel anion exchange chromatography assay, was found to be increased, suggesting subtle relationships between structural dynamics and function. From molecular dynamic simulations, the R120 position appeared critical to conserve proper intra- and intersubunit interactions. In silico mutagenesis followed by simulated annealing of the known small heat shock protein 3D structures suggested a destabilization of the dimeric substructure by the R120 mutations. The whole of the results demonstrated the importance of the R120 residue for structural integrity, both static and dynamic, in relation with function.
The missense mutation Arg-120 to Gly (R120G) in the human alphaBeta-crystallin sequence has been reported to be associated with autosomal dominant myopathy, cardiomyopathy, and cataract. Previous studies of the mutant showed a significant ability to aggregate in cultured cells and an increased oligomeric size coupled to an important loss of the chaperone-like activity in vitro. The aim of this study was to further analyze the role of the R120 residue in the structural and functional properties of alphaBeta-crystallin. The following mutants were generated, Arg-120 to Gly (R120G), Cys (R120C), Lys (R120K), and Asp (R120D). In cellulo, after expression in two cultured cell lines, NIH-3T3 and Cos-7, the capacity of the wild-type and mutant crystallins to aggregate was evaluated and the protein location was determined by immunofluorescence. In vitro, the wild-type and mutant crystallins were expressed in Escherichia coli cells, purified by size exclusion chromatography, and characterized using dynamic light scattering, electron microscopy, and chaperone-like activity assays. Aggregate sizes in cellulo and in vitro were analyzed. The whole of the data showed that the preservation of an Arg residue at position 120 of alphaBeta-crystallin is critical for the structural and functional integrity of the protein and that each mutation results in specific changes in both structural and functional characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.