A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa
Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century.
The progression of the SARS-CoV-2 pandemic in Africa has so far been heterogeneous and the full impact is not yet well understood. Here, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations, predominantly from Europe, which diminished following the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1 and C.1.1. Although distorted by low sampling numbers and blind-spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a breeding ground for new variants.
Investment in Africa over the past year with regards to SARS-CoV-2 genotyping has led to a massive increase in the number of sequences, exceeding 100,000 genomes generated to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence within their own borders, coupled with a decrease in sequencing turnaround time. Findings from this genomic surveillance underscores the heterogeneous nature of the pandemic but we observe repeated dissemination of SARS-CoV-2 variants within the continent. Sustained investment for genomic surveillance in Africa is needed as the virus continues to evolve, particularly in the low vaccination landscape. These investments are very crucial for preparedness and response for future pathogen outbreaks.One-Sentence SummaryExpanding Africa SARS-CoV-2 sequencing capacity in a fast evolving pandemic.
Mauritius, a small island in the Indian Ocean, has had a unique experience of the SARS-CoV-2 pandemic. In March 2020, Mauritius endured a small first wave and quickly implemented control measures which allowed elimination of local transmission of SARS-CoV-2. When borders to the island reopened, it was accompanied by mandatory quarantine and testing of incoming passengers to avoid reintroduction of the virus into the community. As variants of concern (VOCs) emerged elsewhere in the world, Mauritius began using genomic surveillance to keep track of quarantined cases of these variants. In March 2021, another local outbreak occurred, and sequencing was used to investigate this new wave of local infections. Here, we analyze 154 SARS-CoV-2 viral genomes from Mauritius, which represent 12% of all the infections seem in Mauritius, these were both from specimens of incoming passengers before March 2021 and those of cases during the second wave. Our findings indicate that despite the presence of known VOCs Beta (B.1.351) and Alpha (B.1.1.7) among quarantined passengers, the second wave of local SARS-CoV-2 infections in Mauritius was caused by a single introduction and dominant circulation of the B.1.1.318 virus. The B.1.1.318 variant is characterized by fourteen non-synonymous mutations in the S-gene, with five encoded amino acid substitutions (T95I, E484K, D614G, P681H, D796H) and one deletion (Y144del) in the Spike glycoprotein. This variant seems to be increasing in prevalence and it is now present in 34 countries. This study highlights that despite having stopped the introduction of more transmissible VOCs by travel quarantines, a single undetected introduction of a B.1.1.318 lineage virus was enough to initiate a large local outbreak in Mauritius and demonstrated the need for continuous genomic surveillance to fully inform public health decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.