The linear theory of electromigration, including the first‐order nonlinear approximation, is generalized to systems with any equilibria fast enough to be considered instantaneous in comparison with the timescale of peak movement. For example, this theory is practically applied in the electrokinetic chromatography (EKC) mode of the CZE. The model enables the calculation of positions and shapes of analyte and system peaks without restricting the number of selectors, the complexation stoichiometry, or simultaneous acid–base equilibria. The latest version of our PeakMaster software, PeakMaster 6—Next Generation, implements the theory in a user‐friendly way. It is a free and open‐source software that performs all calculations and shows the properties of the background electrolyte and the expected electropherogram within a few seconds. In this paper, we mathematically derive the model, discuss its applicability to EKC systems, and introduce the PeakMaster 6 software.
The continuity equations that describe the movement of ions in liquid solutions under the influence of an external stationary electric field, as it is utilized in electrophoresis, were introduced a long time ago starting with Kohlrausch in 1897. From that time on, there have been many attempts to solve the equations and to discuss the results. In electrophoresis, special attention has always been devoted to the peak shapes obtained by the detector since the shapes have a tight connection with the phenomena taking place during electromigration and influence the efficiency and selectivity of the separation. Among these phenomena, the most important is electromigration dispersion. In this commented review paper, we compare various models of electromigration, try to find points that connect them, and discuss the range of their validity in light of the linear and nonlinear theory of electromigration.
Beta-blockers are chiral compounds with enantiomers that have different bioactivity, which means that while one is active, the other can be inactive or even harmful. Due to their high consumption and incomplete degradation in waste water, they may reach surface waters and affect aquatic organisms. To address this issue we developed a chromatographic method suitable for determining beta-blocker enantiomers in surface waters. It was tested on five beta-blockers (acebutolol, atenolol, bisoprolol, labetalol and metoprolol) and validated on bisoprolol enantiomers. Good enantioseparation of all analysed beta-blockers was achieved on the Chirobiotic V column with the mobile phase composed of methanol/acetic acid/triethylamine (100/0.20/0.15 v/v/v) at a flow rate of 0.5 mL/min and column temperature of 45 °C. Method proved to be linear in the concentration range from 0.075 µg/mL to 5 µg/mL, and showed good recovery. The limits of bisoprolol enantiomer detection were 0.025 µg/mL and 0.026 µg/mL and of quantification 0.075 µg/mL and 0.075 µg/mL. Despite its limitations, it seems to be a promising method for bisoprolol enantiomer analysis in surface water samples. Further research could focus on waste water analysis, where enantiomer concentrations may be high. Furthermore, transferring the method to a more sensitive one such as liquid chromatography coupled with tandem mass spectrometry and using ammonium acetate as the mobile phase additive instead of acetic acid and triethylamine would perhaps yield much lower limits of detection and quantification.
The dynamics of band (peak) shape development in capillary zone electrophoresis in the case of two co-migrating analytes: The displacement and the tag-along effects Peak shapes in electrophoresis are often distorted from the ideal Gaussian shape due to disturbing phenomena, of which the most important is electromigration dispersion. For fully dissociated analytes, there is a tight analogy between nonlinear models describing a separation process in chromatography and electrophoresis. When the velocity of the separated analyte depends on the concentration of the co-analyte, the consequence is a mutual influence of the analytes couples, which distorts both analyte zones. In this paper, we introduce a nonlinear model of electromigration for the analysis of two co-migrating fully dissociated analytes. In the initial stages of separation, they influence each other, which causes much more complicated peak shapes. The analysis has revealed that the two most important phenomena-the displacement and the tag-along effects-are common both for nonlinear chromatography and electrophoresis, though their description is partly based on rather different phenomena. The comparison between the nonlinear model of electromigration we describe and the numerical computer solution of the original continuity equations has proven an almost perfect agreement. The predicted features in peak shapes in initial stages of separation have been fully confirmed by the experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.