Objective. A putative regulatory intronic polymorphism (PD1.3) in the programmed death 1 (PD-1) gene, a negative regulator of T cells involved in peripheral tolerance, is associated with increased risk for systemic lupus erythematosus (SLE). We undertook this study to determine the expression and function of PD-1 in SLE patients.Methods. We genotyped 289 SLE patients and 256 matched healthy controls for PD1.3 by polymerase chain reaction-restriction fragment length polymorphism analysis. Expression of PD-1 and its ligand, PDL-1, was determined in peripheral blood lymphocytes and in renal biopsy samples by flow cytometry and immunohistochemistry. A crosslinker of PD-1 was used to assess its effects on anti-CD3/anti-CD28-induced T cell proliferation and cytokine production.Results. SLE patients had an increased frequency of the PD1.3 polymorphism (30.1%, versus 18.4% in controls; P ؍ 0.006), with the risk A allele conferring decreased transcriptional activity in transfected Jurkat cells. Patients homozygous for PD1.3-but not patients heterozygous for PD1.3-had reduced basal and induced PD-1 expression on activated CD4؉ T cells. In autologous mixed lymphocyte reactions (AMLRs), SLE patients had defective PD-1 induction on activated CD4؉ cells; abnormalities were more pronounced among homozygotes. PD-1 was detected within the glomeruli and renal tubules of lupus nephritis patients, while PDL-1 was expressed by the renal tubules of both patients and controls. PD-1 crosslinking suppressed proliferation and cytokine production in both normal and lupus T cells; addition of serum from patients with active SLE significantly ameliorated this effect on proliferation.Conclusion. SLE patients display aberrant expression and function of PD-1 attributed to both direct and indirect effects. The expression of PD-1/PDL-1 in renal tissue and during AMLRs suggests an important role in regulating peripheral T cell tolerance.
IntroductionBone marrow (BM) is an immunologically privileged site where activated autoantibody-producing B cells may survive for prolonged periods. We investigated the effect of rituximab (anti-CD20 mAb) in peripheral blood (PB) and BM B-cell and T-cell populations in active rheumatoid arthritis (RA) patients.MethodsActive RA patients received rituximab (1,000 mg) on days 1 and 15. PB (n = 11) and BM (n = 8) aspirates were collected at baseline and at 3 months. We assessed B-cell and T-cell populations using triple-color flow cytometry.ResultsRituximab therapy decreased PB (from a mean 2% to 0.9%, P = 0.022) but not BM (from 4.6% to 3.8%, P = 0.273) CD19+ B cells, associated with a significant reduction in the activated CD19+HLA-DR+ subset both in PB (from 55% to 19%, P = 0.007) and in BM (from 68% to 19%, P = 0.007). Response to rituximab was preceded by a significant decrease in PB and BM CD19+CD27+ memory B cells (P = 0.022). These effects were specific to rituximab since anti-TNF therapy did not reduce total or activated B cells. Rituximab therapy did not alter the number of activated CD4+HLA-DR+ and CD4+CD25+ T cells.ConclusionsRituximab therapy preferentially depletes activated CD19+HLA-DR+ B cells in the PB and BM of active RA patients. Clinical response to rituximab is associated with depletion of CD19+CD27+ memory B cells in PB and BM of RA patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.