In many cancer types, the expression and function of ∼22 nucleotide-long microRNAs (miRNA) is deregulated. Mature miRNAs can be stably detected in extracellular vesicles (EVs) in biofluids, therefore they are considered to have great potential as biomarkers. In the present study, we investigated whether miRNAs have a distinct expression pattern in urine-EVs of prostate cancer (PCa) patients compared to control males. By next generation sequencing, we determined the miRNA expression in a discovery cohort of 4 control men and 9 PCa patients. miRNAs were validated by using a stemloop RT-PCR in an independent cohort of 74 patients (26 control and 48 PCa-patients). Whereas standard mapping protocols identified > 10 PCa associated miRNAs in urinary EVs, miR-21, miR-375 and miR-204 failed to robustly discriminate for disease in a validation study with RT-PCR-detection of mature miRNA sequences. In contrast, we observed that miRNA isoforms (isomiRs) with 3′ end modifications were highly discriminatory between samples from control men and PCa patients. Highly differentially expressed isomiRs of miR-21, miR-204 and miR-375 were subsequently validated in an independent group of 74 patients. Receiver-operating characteristic analysis was performed to evaluate the diagnostic performance of three isomiRs, resulting in a 72.9% sensitivity with a high (88%) specificity and an area under the curve (AUC) of 0.866. In comparison, prostate specific antigen had an AUC of 0.707 and measuring the mature form of these miRNAs yielded a lower 70.8% sensitivity and 72% specificity (AUC 0.766). We propose that isomiRs may carry discriminatory information which is useful to generate stronger biomarkers.
Urine exosomes (extracellular vesicles; EVs) contain (micro)RNA (miRNA) and protein biomarkers that are useful for the non-invasive diagnosis of various urological diseases. However, the urinary Tamm-Horsfall protein (THP) complex, which forms at reduced temperatures, may affect EV isolation and may also lead to contamination by other molecules including microRNAs (miRNAs). Therefore, we compared the levels of three miRNAs within the purified EV fraction and THP- protein-network. Urine was collected from healthy donors and EVs were isolated by ultracentrifugation (UC), two commercial kits or sepharose size-exclusion chromatography (SEC). SEC enables the separation of EVs from protein-complexes in urine. After UC, the isolation of EV-miRNA was compared with two commercial kits. The EV isolation efficiency was evaluated by measuring the EV protein markers, Alix and TSG101, CD63 by Western blotting, or miR-375, miR-204 and miR-21 by RT-qPCR. By using commercial kits, EV isolation resulted in either low yields or dissimilar miRNA levels. Via SEC, the EVs were separated from the protein-complex fraction. Importantly, a different ratio was observed between the three miRNAs in the protein fraction compared to the EV fraction. Thus, protein-complexes within urine may influence EV-biomarker studies. Therefore, the characterization of the isolated EV fraction is important to obtain reproducible results.
Herpesvirus envelope glycoprotein B (gB) is one of the best-documented extracellular vesicle (EVs)-incorporated viral proteins. Regarding the sequence and structure conservation between gB homologs, we asked whether bovine herpesvirus-1 (BoHV-1) and pseudorabies virus (PRV)-encoded gB share the property of herpes simplex-1 (HSV-1) gB to be trafficked to EVs and affect major histocompatibility complex (MHC) class II. Our data highlight some conserved and differential features of the three gBs. We demonstrate that mature, fully processed BoHV-1 and PRV gBs localize to EVs isolated from constructed stable cell lines and EVs-enriched fractions from virus-infected cells. gB also shares the ability to co-localize with CD63 and MHC II in late endosomes. However, we report here a differential effect of the HSV-1, BoHV-1, and PRV glycoprotein on the surface MHC II levels, and MHC II loading to EVs in stable cell lines, which may result from their adverse ability to bind HLA-DR, with PRV gB being the most divergent. BoHV-1 and HSV-1 gB could retard HLA-DR exports to the plasma membrane. Our results confirm that the differential effect of gB on MHC II may require various mechanisms, either dependent on its complex formation or on inducing general alterations to the vesicular transport. EVs from virus-infected cells also contained other viral glycoproteins, like gD or gE, and they were enriched in MHC II. As shown for BoHV-1 gB-or BoHV-1-infected cell-derived vesicles, those EVs could bind anti-virus antibodies in ELISA, which supports the immunoregulatory potential of alphaherpesvirus gB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.