Background The aim of the study was to assess the safety and glycemic outcomes with the use of a Do-It-Yourself (DIY) Hybrid Closed-Loop (HCL) system based on the AndroidAPS application in type 1 diabetes (T1D). Methods Single-center clinical trial, with 3-week run-in and 12-week study period. DIY HCL system consisted of the Dana Diabecare RS insulin pump, Dexcom G5 continuous glucose monitoring system and AndroidAPS application. Primary outcome was safety: incidences of severe hypoglycemia, diabetic ketoacidosis, time spent in glycemia <54 mg/dl. Secondary endpoints included percentage of time in range (TIR) 70–180 mg/dl, time below 70 mg/dl, HbA1c, insulin requirements, and body weight. Results In total 12 subjects (5 men, 7 women) were enrolled, mean age 31.3±6.7, 95%CI(27.7–34.9) years, mean diabetes duration 16.1±5.7, 95%CI(13.0–19.2) years. No episodes of severe hypoglycemia or ketoacidosis were observed. Percentage of time spent in glycemia below 54mg/dl was not increased. Average sensor glycemia was lower in the study period than baseline (141.1 ± 8.4, 95%CI(136.3–145.9) vs. 153.3 ± 17.9, 95%CI(143.2–163.4), mg/dl p<0.001). TIR 70–180 mg/dl was improved by 11.3%, 95%CI(2.8%-19.8%) (from 68.0 ± 12.7 to 79.3 ± 6.4%, p<0.001), without increasing hypoglycemia time. The HbA1c level decreased by -0.5%, 95%CI(-0.9%–-0.1%) (from 6.8 ± 0.5 to 6.3 ± 0.4%, p<0.001). Additionally, in the last 4 weeks of the study period participants significantly improved and showed TIR 70–180 mg/dl 82.1 ± 5.6%, 95%CI(78.9–85.3), time <54 mg/dl 0.30 (0.20–0.55)%, median 95%CI(0.1–0.7) and <70 mg/dl 1.90 (1.10–3.05)%, median 95%CI(0.7–3.2). The insulin requirement and body weight did not change in the study. Conclusions The study revealed safety of the Do-It-Yourself HCL system AndroidAPS in adults with T1D, limited to well-controlled, highly selected and closely monitored patients. The use of AndroidAPS significantly improved HbA1c, time in range and average sensor glycemia without increasing hypoglycemia. As both patients and their medical team are gaining experience using the system over time, they improve glycemic control. Trial registration German Clinical Trials Register: no. DRKS00015439; https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00015439.
The widespread use of personal insulin pumps in the treatment of type 1 diabetes has significantly improved the effects of therapy. Better metabolic control of diabetes, but also increased comfort of life and professional opportunities have been achieved. One of the functions that increased the effectiveness of insulin therapy using a personal insulin pump is the bolus calculator. The bolus calculator function allows the user to dose their insulin more accurately before meals and to correct hyperglycaemia. The bolus calculator algorithms in insulin pumps of individual manufacturers differ in the way they calculate the correction dose and the amount of so-called active insulin. Consequently, with the same treatment parameters, individual bolus calculators may offer a different dose of insulin. Understanding the principles of the bolus calculator by therapeutic team members and patients is very important for proper diabetes education and diabetes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.