The most abundant isoform of the 2S albumin present in seeds of Arabidopsis thaliana has been sequenced and the corresponding gene isolated. Examination of the protein and DNA sequences allows the determination of the exact proteolytic cleavage sites during posttranslational processing. Like other 2S albumins, that of Arabidopsis is made as a prepropeptide. After removal of the signal peptide, the propeptide is cleaved at four other points, giving two subunits linked by a disulfide bridge(s). Comparison of these cleavage sites with those of 2S albumins of Brassica napus and Bertholletia excelsa suggests that while individual cleavage sites between species are conserved, the four processing sites within a species are not similar, suggesting that up to four different proteases may be involved in processing 2S albumins. The Arabidopsis
HB patients GENOMIC STUDY TRANSCRIPTOMIC STUDY METHYLATION STUDY CytoScan HD ®-array RNA-sequencing/ ddPCR HTA ®-array/ RT-qPCR 850K (EPIC)-array/ QUAlu Dysregulation of global RNA & BLCAP editing Overexpression of 14q32 DLK1-DIO3 genes 16 + VIM-gene signature (C1/C2/C2B) 2 epigenomic HB subtypes (Epi-CA & Epi-CB) CLINICAL PARAMETERS: prognostic marker identification Poor prognostic factors:-4q,-18, 17q11.2 AI (NF1) CHKA new therapeutic target Molecular risk stratification MRS1 MRS2 MRS3 Strong 14q32 Epi-CB Time Survival Highlights Hepatoblastoma (HB) involves global dysregulation of RNA editing, including in the tumor suppressor BLCAP. Overexpression of a 300 kb region within the 14q32 DLK1/DIO3 locus is a new hallmark of HB. We identified 2 epigenomic HB subtypes-Epi-CA and Epi-CB-with distinct degrees of DNA hypomethylation and CpG island hypermethylation. The molecular risk stratification of HB, based on the 14q32-signature and epigenomic subtypes, is associated with patient outcomes. The enzyme CHKA could be a novel therapeutic target for patients with HB.
Background
Major depression (MD) is the most prevalent psychiatric disease in the population and is considered a prodromal stage of the Alzheimer’s disease (AD). Despite both diseases having a robust genetic component, the common transcriptomic signature remains unknown.
Methods
We investigated the cognitive and emotional behavioural responses in 3- and 6-month-old APP/PSEN1-Tg mice, before β-amyloid plaques were detected. We studied the genetic and pathway deregulation in the prefrontal cortex, striatum, hippocampus and amygdala of mice at both ages, using transcriptomic and functional data analysis.
Results
We found that depressive-like and anxiety-like behaviours, as well as memory impairments, are already present at 3-month-old APP/PSEN1-Tg mutant mice together with the deregulation of several genes, such as Ciart, Grin3b, Nr1d1 and Mc4r, and other genes including components of the circadian rhythms, electron transport chain and neurotransmission in all brain areas. Extending these results to human data performing GSEA analysis using DisGeNET database, it provides translational support for common deregulated gene sets related to MD and AD.
Conclusions
The present study sheds light on the shared genetic bases between MD and AD, based on a comprehensive characterization from the behavioural to transcriptomic level. These findings suggest that late MD could be an early manifestation of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.