X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.
ORIGINAL RESEARCH ARTICLEPurpose: Mowat-Wilson syndrome (MWS) is a rare intellectual disability/multiple congenital anomalies syndrome caused by heterozygous mutation of the ZEB2 gene. It is generally underestimated because its rarity and phenotypic variability sometimes make it difficult to recognize. Here, we aimed to better delineate the phenotype, natural history, and genotype-phenotype correlations of MWS. Methods:In a collaborative study, we analyzed clinical data for 87 patients with molecularly confirmed diagnosis. We described the prevalence of all clinical aspects, including attainment of neurodevelopmental milestones, and compared the data with the various types of underlying ZEB2 pathogenic variations.Results: All anthropometric, somatic, and behavioral features reported here outline a variable but highly consistent phenotype. By presenting the most comprehensive evaluation of MWS to date, we define its clinical evolution occurring with age and derive suggestions for patient management. Furthermore, we observe that its severity correlates with the kind of ZEB2 variation involved, ranging from ZEB2 locus deletions, associated with severe phenotypes, to rare nonmissense intragenic mutations predicted to preserve some ZEB2 protein functionality, accompanying milder clinical presentations. Conclusion:Knowledge of the phenotypic spectrum of MWS and its correlation with the genotype will improve its detection rate and the prediction of its features, thus improving patient care.
Tricho-rhino-phalangeal syndrome (TRPS) is
Currently available data on the relationship between the prevalence of isolated congenital malformations and parental age are inconsistent and frequently divergent. We utilised the data from the Polish Registry of Congenital Malformations (PRCM) to accurately assess the interplay between maternal and paternal age in the risk of isolated non-syndromic congenital malformations. Out of 902 452 livebirths we studied 8683 children aged 0-2 years registered in the PRCM. Logistic regression was used to simultaneously adjust the risk estimates for maternal and paternal age. Our data indicated that paternal and maternal age were independently associated with several congenital malformations. Based on our data, young maternal and paternal ages were independently associated with gastroschisis. In addition, young maternal age, but not young paternal age, carried a higher risk of neural tube defects. Advanced maternal and paternal ages were both independently associated with congenital heart defects. Moreover, there was a positive association between advanced paternal age and hypospadias, cleft palate, and cleft lip (with or without cleft palate). No significant relationships between parental age and the following congenital malformations were detected: microcephaly, hydrocephaly, oesophageal atresia, atresia or stenosis of small and/or large intestine, ano-rectal atresia or stenosis, renal agenesis or hypoplasia, cystic kidney disease, congenital hydronephrosis, diaphragmatic hernia and omphalocele.
Recently, a truncating mutation of the UBE2A gene has been observed in a family with X-linked mental retardation (XLMR) (1). The three affected males had similar phenotypes, including seizures, obesity, marked hirsutism and a characteristic facial appearance. Here, we report on two families with a total of seven patients and a clinically very similar syndromic form of XLMR. Linkage analysis was performed in the larger of these families, and screening several positional candidate genes revealed a G23R missense mutation in the UBE2A gene. Subsequent UBE2A screening of a phenotypically similar second family revealed another missense mutation, R11Q, again affecting an evolutionarily conserved amino acid close to the N-terminus of the protein. SIFT and PolyPhen analyses suggest that both mutations are pathogenic, which is supported by their absence in 168 healthy controls. Thus, both missense and truncating mutations can give rise to a specific, syndromic form of XLMR which is identifiable in a clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.