Silene vulgaris is a pseudometallophyte that spontaneously occurs in various ecological niches. Therefore, three ecotypes of this species representing calamine (CAL), serpentine (SER), and non-metallicolous (NM) populations were investigated in this study. Owing to the presence of Pb or Ni ions in natural habitats from metallicolous populations originated, we used these metals as model stressors to determine the survival strategy of tested ecotypes and analyze metal distribution at various levels of organism organization. We focused on growth tolerance, non-enzymatic antioxidants, and photosynthetic apparatus efficiency as well as anatomical and ultrastructural changes occurred in contrasting ecotypes exposed in vitro to excess amounts of Pb 2+ and Ni 2+ . Although Ni application contributed to shoot culture death, the study revealed that the mechanisms of Pb detoxification differed between ecotypes. The unspecific reaction of both metallicolous specimens relied on the formation of effective mechanical barrier against toxic ion penetration, while the Pb appearance in the protoplasts led to the activation of ecotype-specific intracellular defense mechanisms. Hence, the response of CAL and SER ecotypes was almost unchanged under Pb treatment, whereas the reaction of NM one resulted in growth disturbances and physiological alternations. Moreover, both metallicolous ecotypes exhibited increase generation of reactive oxygen species (ROS) in leaves, even before the harmful ions got into these parts of plants. It may implicate the potential role of ROS in CAL and SER adaptation to heavy metals and, for the first time, indicate on integral function of ROS as signaling molecules in metal-tolerant species.
Some studies indicate that metal nanoparticles can be used in plant cultivation as fungicides and growth stimulators. The aim of this study was to evaluate the effect of silver (AgNPs) and copper nanoparticles (CuNPs) on the growth parameters, on the extent of leaves infected by powdery mildew and on spontaneous ectomycorrhizal colonization of English oak (Quercus robur L.) seedlings growing in containers. Nanoparticles were applied to foliage four times during one vegetation season, at four concentrations: 0, 5, 25 and 50 ppm. The adsorption of NPs to leaves was observed by microscopical imaging (TEM). The tested concentrations of AgNPs and CuNPs did not have any significant effect on the growth parameters of the oak seedlings. TEM results showed disturbances in the shape of plastids, plastoglobules and the starch content of oak leaves treated with 50 ppm Cu-and AgNPs, while no changes in the ultrastructure of stems and roots of oak plants treated with NPs were observed. No significant difference in powdery mildew disease intensity was observed after NP foliar app lication. Four ectomycorrhizal taxa were detected on oak roots (Sphaerosporella brunnea, Thelephora terrestris, Paxillus involutus and Laccaria proxima). Oak seedlings treated (foliar) with CuNPs and AgNPs at 25 ppm were characterised by the highest degree of mycorrhization (respectively, 37.1% and 37.5%) among all treatments including the control treatment. None of the tested NPs manifested phytotoxicity in the examined Q. robur seedlings under container nursery conditions.
Metal nanoparticles (NPs) are finding ever-wider applications in plant production (agricultural and forestry-related) as fertilisers, pesticides and growth stimulators. This makes it essential to examine their impact on a variety of plants, including trees. In the study detailed here, we investigated the effects of nanoparticles of silver and copper (i.e., AgNPs and CuNPs) on growth, and chlorophyll fluorescence, in the seedlings of Scots pine and pedunculate oak. We also compared the ultrastructure of needles, leaves, shoots and roots of treated and untreated plants, under transmission electron microscopy. Seedlings were grown in containers in a peat substrate, prior to the foliar application of NPs four times in the course of the growing season, at the four concentrations of 0, 5, 25 and 50 ppm. We were able to detect species-specific activity of the two types of NP. Among seedling pines, the impact of both types of NP at the concentrations supplied limited growth slightly. In contrast, no such effect was observed for the oaks grown in the trial. Equally, it was not possible to find ultrastructural changes in stems and roots associated with the applications of NPs. Cell organelles apparently sensitive to the action of both NPs (albeit only at the highest applied concentration of 50 ppm) were chloroplasts. The CuNP-treated oaks contained large plastoglobules, whereas those dosed with AgNP contained large starch granules. The NP-treated pines likewise exhibited large numbers of plastoglobules, while the chloroplasts of NP-treated plants in general presented shapes that changed from lenticular to round. In addition, large osmophilic globules were present in the cytoplasm. Reference to maximum quantum yields from photosystem II (Fv/Fm)—on the basis of chlorophyll a fluorescence measurements—revealed a slight debilitation of oak seedlings following the application of both kinds of NP at higher concentrations. In contrast, in pines, this variable revealed no influence of AgNPs, as well as a favourable effect due to the CuNPs applied at a concentration of 5 ppm. Our research also showed that any toxic impact on pine or oak seedlings due to the NPs was limited and only present with higher concentrations.
Canavanine (CAN) is a nonproteinogenic amino acid, and its toxicity comes from its utilization instead of arginine in many cellular processes. As presented in previous experiments, supplementation of tomato (Solanum lycopersicum L.) with CAN led to decreased nitric oxide (NO) level and induced secondary oxidative stress. CAN improved total antioxidant capacity in roots, with parallel inhibition of enzymatic antioxidants. The aim of this work was to determine how CAN-dependent limitation of NO emission and reactive oxygen species overproduction impact content, localization, and metabolism of phenolic compounds (PCs) in tomato roots. Tomato seedlings were fed with CAN (10 and 50 µM) for 24 or 72 h. Inhibition of root growth due to CAN supplementation correlated with increased concentration of total PCs; CAN (50 µM) led to the homogeneous accumulation of PCs all over the roots. CAN increased also flavonoids content in root tips. The activity of polyphenol oxidases and phenylalanine ammonia-lyase increased only after prolonged treatment with 50 µM CAN, while expressions of genes encoding these enzymes were modified variously, irrespectively of CAN dosage and duration of the culture. PCs act as the important elements of the cellular antioxidant system under oxidative stress induced by CAN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.