Background Two clinical parameters, the gingival thickness (GT) and the width of keratinized tissue (WKT), describe the gingival phenotype, which is defined as the 3-dimensional volume of the gingiva. The periodontal phenotype additionally includes the thickness of the labial plate of the alveolar crest (TLPAC). Material/Methods Thirty patients with healthy periodontium on the upper canines and incisors underwent measurements for crestal, supracrestal, free gingival thickness (FGT), the alveolar crest-gingival margin (AC-GM), alveolar crest-cementoenamel junction distance, and the TLPAC at 2, 4, and 8 mm apically from the edge of the alveolar crest using cone-beam computed tomography (CBCT) with computer-aided design and prosthetic-driven implant planning technology. For each tooth, the gingival and periodontal phenotype was evaluated on the basis of the gingival thickness, width of keratinized tissue (WKT), and TLPAC measurements. Each patient’s periodontal phenotype was evaluated according to the coronal width/length ratio of both the upper central incisors. Results The dentogingival units had varying average values for the 3 periodontal phenotypes (thin phenotype: FGT 0.65±0.06 mm, WKT 4.85±1.18 mm, AC-GM 3.17±0.64 mm, TLPAC2 0.66±0.28 mm; medium phenotype: FGT 0.87±0.07 mm, WKT 5.49±1.23 mm, AC-GM 3.36±0.65 mm, TLPAC2 0.76±0.37 mm; and thick phenotype: FGT 1.20 mm, WKT 6.00 mm, AC-GM 3.90 mm, TLPAC2 0.90 mm). Positive correlations were seen among WKT, FGT, AC-GM, and TLPAC2. Conclusions Positive correlations between the FGT and WKT, and the AC-GM distance confirm that measurements using CBCT with computer-aided design and prosthetic-driven implant planning technology can evaluate the gingival phenotype and TLPAC2 for the periodontal phenotype.
The aim of this study was to compare the effectiveness of two diagnostic methods: ultrasonic gingival thickness measurement (UGTM) and cone-beam computed tomography, intraoral scanning by computer-aided design technology with prosthetic-driven implant planning software (CBCT/CAD/PDIP) in determining the gingival phenotype (GP). Thirty periodontally healthy patients were examined. The ultrasonic device Pirop G® with a frequency of 20 MHz and CBCT/CAD/PDIP were used to measure gingival thickness at upper canines and incisors in three points localized midbuccally, namely free gingival thickness (FGT), supracrestal (SGT) and crestal (CGT). Probing depth (PD), clinical attachment level (CAL) and width of keratinized tissue (WKT) were measured using periodontal probe. Intra-examiner and inter-examiner agreement and agreement between methods were evaluated using Bland-Altman analyses. Comparing both methods in the determination of SGT (bias = 0.17 mm, SD = 0.25 mm, p < 0.000) and CGT (bias = −0.45 mm, SD = 0.32 mm, p < 0.000) 95.0% and 95.6% agreement were found, respectively, and in the FGT range only 93.3% (bias = −0.45 mm, SD = 0.32 mm, p < 0.000). The presence of positive correlations between WKT and SGT was shown. A positive correlation between SGT and WKT confirms the purpose of measuring these parameters for the evaluation of the GP. Both the ultrasonic method and cone-beam computed tomography combined with intraoral scanning and prosthetic-driven implant planning method were useful in determining gingival phenotype, however, the ultrasonic method was more accurate for measuring GT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.