The Gauss map of non-degenerate surfaces in the three-dimensional Minkowski space are viewed as dynamical fields of the two-dimensional O(2, 1) Nonlinear Sigma Model. In this setting, the moduli space of solutions with rotational symmetry is completely determined. Essentially, the solutions are warped products of orbits of the 1-dimensional groups of isometries and elastic curves in either a de Sitter plane, a hyperbolic plane or an anti de Sitter plane. The main tools are the equivalence of the two-dimensional O(2, 1) Nonlinear Sigma Model and the Willmore problem, and the description of the surfaces with rotational symmetry. A complete classification of such surfaces is obtained in this paper. Indeed, a huge new family of Lorentzian rotational surfaces with a space-like axis is presented. The description of this new class of surfaces is based on a technique of surgery and a gluing process, which is illustrated by an algorithm. MSC 2000 Classification: Primary 53C40; Secondary 53C50
. Constant mean curvature spacelike hypersurfaces in Lorentzian manifolds with a timelike gradient conformal vector field. Classical and Quantum Gravity, IOP Publishing, 2011, 28 (14) A new technique to study spacelike hypersurfaces of constant mean curvature in a spacetime which admits a timelike gradient conformal vector field is introduced. As an application, the leaves of the natural spacelike foliation of such spacetimes are characterized in some relevant cases. The global structure of this class of spacetimes is analyzed and the relation with its well-known subfamily of Generalized Robertson-Walker spacetimes is exposed in detail. Moreover, some known uniqueness results for compact spacelike hypersurfaces of constant mean curvature in Generalized Robertson-Walker spacetimes are widely extended. Finally, and as a consequence, several Calabi-Bernstein problems are solved obtaining all the entire solutions on a compact Riemannian manifold to the constant mean curvature spacelike hypersurface equation, under natural geometric assumptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.