Although the inducible isoform of nitric oxide synthase (iNOS) is a well-established source of nitric oxide (NO*) during inflammation of the central nervous system (CNS), little is known about the involvement of constitutive isoforms of NOS (cNOS) in the inflammatory process. The aim of this study was to compare the responses of the expression and activity of iNOS and the two cNOS isoforms, neuronal and endothelial (nNOS and eNOS, respectively), in the brain to systemic inflammation and their roles in the cascade of events leading to degeneration and apoptosis. A systemic inflammatory response in C57BL/6 mice was induced by intraperitoneal injection of lipopolysaccharide [LPS; 1 mg/kg body weight (b.w.)]. The relative roles of the NOS isoforms were evaluated after injection of NG-nitro-L-arginine (NNLA; 30 mg/kg b.w.), which preferentially inhibits cNOS, or 1400W (5 mg/kg b.w.), an inhibitor of iNOS. Biochemical and morphological alterations were analyzed up to 48 hr after administration of LPS. Systemic LPS administration evoked significant ultrastructural alterations in brain capillary vessels, neuropils, and intracellular organelles of neurons, astrocytes, and microglia. Apoptotic/autophagic processes occurred in many neurons of the substantia nigra (SN), which coincided with exclusive enhancement of iNOS expression and activity in this brain region. Moreover, inhibitors of both iNOS and cNOS prevented LPS-evoked release of apoptosis-inducing factor (AIF) from SN mitochondria. Collectively, the results indicate that synthesis of NO* by both the inducible and constitutive NOS isoforms contribute to the activation of apoptotic pathways in the brain during systemic inflammation.
Cytosolic phospholipase A2 (cPLA2) preferentially liberates arachidonic acid (AA), which is known to be elevated in Alzheimer's disease (AD). The aim of this study was to investigate the possible relationship between enhanced nitric oxide (NO) generation observed in AD and cPLA2 protein level, phosphorylation, and AA release in rat pheochromocytoma cell lines (PC12) differing in amyloid beta secretion. PC12 control cells, PC12 cells bearing the Swedish double mutation in amyloid beta precursor protein (APPsw), and PC12 cells transfected with human APP (APPwt) were used. The transfected APPwt and APPsw PC12 cells showed an about 2.8- and 4.8-fold increase of amyloid beta (Abeta) secretion comparing to control PC12 cells. An increase of NO synthase activity, cGMP and free radical levels in APPsw and APPwt PC12 cells was observed. cPLA2 protein level was higher in APPsw and APPwt PC12 cells comparing to PC12 cells. Moreover, phosphorylated cPLA2 protein level and [3H]AA release were also higher in APP-transfected PC12 cells than in the control PC12 cells. An NO donor, sodium nitroprusside, stimulated [3H]AA release from prelabeled cells. The highest NO-induced AA release was observed in control PC12 cells, the effect in the other cell lines being statistically insignificant. Inhibition of cPLA2 by AACOCF3 significantly decreased the AA release. Inhibitors of nNOS and gamma-secretase reduced AA release in APPsw and APPwt PC12 cells. The basal cytosolic [Ca2+](i) and mitochondrial Ca2+ concentration was not changed in all investigated cell lines. Stimulation with thapsigargin increased the cytosolic and mitochondrial Ca2+ level, activated NOS and stimulated AA release in APP-transfected PC12 cells. These results indicate that Abeta peptides enhance the protein level and phosphorylation of cPLA2 and AA release by the NO signaling pathway.
Nitric oxide (NO) is a potent extracellular and intracellular physiological messenger. However, NO liberated in excessive amounts can be involved in macromolecular and mitochondrial damage in brain aging and in neurodegenerative disorders. The molecular mechanism of its neurotoxic action is not fully understood. Our previous data indicated involvement of NO in the release of arachidonic acid (AA), a substrate for cyclo- and lipoxygenases (COX and LOX, respectively). In this study we investigated biochemical processes leading to cell death evoked by an NO donor, sodium nitroprusside (SNP). We found that SNP decreased viability of pheochromocytoma (PC12) cells in a concentration- and time-dependent manner. SNP at 0.1 mM caused a significant increase of apoptosis-inducing factor (AIF) protein level in mitochondria. Under these conditions 80% of PC12 cells survived. The enhancement of mitochondrial AIF level might protect most of PC12 cells against death. However, NO released from 0.5 mM SNP induced massive cell death but had no effect on protein level and localization of AIF and cytochrome c. Caspase-3 activity and poly(ADP-ribose) polymerase-1 (PARP-1) protein levels were not changed. However, PARP activity significantly decreased in a time-dependent manner. Inhibition of both COX isoforms and of 12/15-LOX significantly lowered the SNP-evoked cell death. We conclude that AIF, cytochrome c and caspase-3 are not responsible for the NO-mediated cell death evoked by SNP. The data demonstrate that NO liberated in excess decreases PARP-1 activity. Our results indicate that COX(s) and LOX(s) are involved in PC12 cell death evoked by NO released from its donor, SNP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.