Nitric oxide (NO) is a small highly diffusible gas and a ubiquitous bioactive molecule. Its chemical properties make NO a versatile signal molecule that functions through interactions with cellular targets via either redox or additive chemistry. In plants, NO plays a role in a broad spectrum of pathophysiological and developmental processes. Although nitric oxide synthase (NOS)-dependent NO production has been reported in plants, no gene, cDNA, or protein has been isolated to date. In parallel, precise and regulated NO production can be measured from the activity of the ubiquitous enzyme nitrate reductase (NR). In addition to endogenous NO formation, high NO emissions are observed from fertilized soils, but their effects on the physiology of plants are largely unknown. Many environmental and hormonal stimuli are transmitted either directly or indirectly by NO signaling cascades. The ability of NO to act simultaneously on several unrelated biochemical nodes and its redox homeostatic properties suggest that it might be a synchronizing molecule in plants.
Nitric oxide (NO) is a bioactive molecule that functions in numerous physiological processes in plants, most of them involving cross-talk with traditional phytohormones. Auxin is the main hormone that regulates root system architecture. In this communication we report that NO promotes lateral root (LR) development, an auxin-dependent process. Application of the NO donor sodium nitroprusside (SNP) to tomato ( Lycopersicon esculentum Mill.) seedlings induced LR emergence and elongation in a dose-dependent manner, while primary root (PR) growth was diminished. The effect is specific for NO since the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO) blocked the action of SNP. Depletion of endogenous NO with CPTIO resulted in the complete abolition of LR emergence and a 40% increase in PR length, confirming a physiological role for NO in the regulation of root system growth and development. Detection of endogenous NO by the specific probe 4,5-diaminofluorescein diacetate (DAF-2 DA) revealed that the NO signal was specifically located in LR primordia during all stages of their development. In another set of experiments, SNP was able to promote LR development in auxin-depleted seedlings treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). Moreover, it was found that LR formation induced by the synthetic auxin 1-naphthylacetic acid (NAA) was prevented by CPTIO in a dose-dependent manner. All together, these results suggest a novel role for NO in the regulation of LR development, probably operating in the auxin signaling transduction pathway.
SummaryIron is an essential and commonly limited nutrient for plants. To increase the uptake of iron during times of low iron supply, plants, except the grasses, activate a set of physiological and morphological responses in their roots that include iron reduction, soil acidification, Fe(II) transport and proliferation of root hairs. It is not known how root cells sense and transduce the changes that occur after the onset of iron deficiency. This work presents evidence that nitric oxide (NO) is produced rapidly in the root epidermis of tomato plants (Solanum lycopersicum) that are grown in iron-deficient conditions. The scavenging of NO prevented iron-deficiencyinduced upregulation of the basic helix-loop-helix transcription factor FER, the ferric-chelate reductase LeFRO1 and the Fe(II) transporter LeIRT1 genes. On the other hand, exogenous application of the NO donor S-nitrosoglutathione enhanced the accumulation of FER, LeFRO1 and LeIRT1 mRNA in roots of iron-deficient plants. The activity of the root ferric-chelate reductase and the proliferation of root hairs induced by iron deficiency were stimulated by NO supplementation and suppressed by NO scavenging. Nitric oxide was ineffective in inducing iron-deficiency responses in the tomato fer mutant, which indicates that the FER protein is necessary to mediate the action of NO. Furthermore, NO supplementation improved plant growth under low iron supply, which suggests that NO is a key component of the regulatory mechanisms that control iron uptake and homeostasis in plants. In summary, the results of this investigation indicate that an increase in NO production is an early response of roots to iron deprivation that contributes to the improvement of iron availability by (i) modulating the expression of iron uptake-related genes and (ii) regulating the physiological and morphological adaptive responses of roots to iron-deficient conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.