Titanium and its alloys are often used for long-term implants after their surface treatment. Such surface modification is usually performed to improve biological properties but seldom to increase corrosion resistance. This paper presents research results performed on such metallic materials modified by a variety of techniques: direct voltage anodic oxidation in the presence of fluorides, micro-arc oxidation (MAO), pulse laser treatment, deposition of chitosan, biodegradable Eudragit 100 and poly(4-vinylpyridine (P4VP), carbon nanotubes, nanoparticles of TiO2, and chitosan with Pt (nano Pt) and polymeric dispersant. The open circuit potential, corrosion current density, and potential values were determined by potentiodynamic technique, and microstructures of the surface layers and coatings were characterized by scanning electron microscopy. The results show that despite the applied modifications, the corrosion current density still appears in the region of very low values of some nA/cm2. However, almost all surface modifications, designed principally for the improvement of biological properties, negatively influence corrosion resistance. The reasons for observed effects can vary, such as imperfections and permeability of some coatings or accelerated degradation of biodegradable deposits in simulated body fluids during electrochemical testing. Despite that, all coatings can be accepted for biological applications, and such corrosion testing results are presumed not to be of major importance for their applications in medicine.
The Ti13Nb13Zr alloy was subjected to laser modification with the Nd:YAG laser provided that such treatment would increase the surface roughness followed improved adhesion of hydroxyapatite (HAp) coatings The hydroxyapatite was deposited by electrophoretic method in suspension of 0.5 g HA powder and 100 ml ethyl alcohol. The deposition was carried out for 10 min at 10 V voltage followed by drying at room temperature for 24 h and heating at 800°C for 1 h in vacuum. The thickness of the HAp coatings was found as of about 4.06 µm to 9.05 µm. The examinations of surfaces were carried out at each stage of the experiment with the ultra-high resolution scanning electron microscope. The measurements of surface roughness after laser treatment and after HAp deposition were performed with the Hommel Etamic Waveline profilograph.
Nowadays, surface engineering focuses on research into materials for medical applications. Titanium and its alloys are prominent, especially Ti-6Al-4V and Ti-13Nb-13Zr. Samples made of pure grade IV titanium and the titanium alloys Ti-6Al-4V and Ti-13Nb-13Zr were modified via laser treatment with laser beam frequency f = 25 Hz and laser beam power P = 1000 W during a laser pulse with duration t = 1 ms. Subsequently, to analyze the properties of the obtained surface layers, the following tests were performed: scanning electron microscopy, chemical and phase composition analysis, wetting angle tests and roughness tests. The assessment of the impact of the laser modification on the internal stresses of the investigated materials was carried out by comparing the values of the stresses of the laser-modified samples to those of the reference samples. The obtained results showed increased values of tensile stresses after laser modification: the highest value was found for the Ti-6Al-4V alloy at 6.7434 GPa and the lowest for pure grade IV titanium at 3.742 GPa. After laser and heat treatment, a reduction in the stress was observed, together with a significant increase in the hardness of the tested materials, with the highest value for Ti-6Al-4V alloy at 27.723 GPa. This can provide better abrasion resistance and lower long-term toxicity, both of which are desirable when using Ti-6Al-4V and Ti-13Nb-13Zr alloys for implant materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.