Prolonged stress perturbs physiological balance of a subject and thus can lead to depression. Nevertheless, some individuals are more resilient to stress than the others. Defining molecular factors underlying resilience to stress may contribute to the development of a new antidepressant strategy based on the restoration of resilient phenotype in depressed subjects. We used chronic mild stress (CMS) paradigm—well-characterized animal model of depression which caused in rats behavioral deficits (anhedonia) manifested by decreased consumption of sucrose solution. CMS also generated a proportion of resilient rats which did not alter sucrose consumption despite being stressed. Recently, regulation of a gene expression associated with microRNA (miRNA) is considered as an important factor modulating biochemical response to stress. Based on our previous work and literature survey, we investigated changes in the expression level of seven miRNAs (i.e., miR-18a-5p, miR-34a-5p, miR-135a-5p, miR-195-5p, miR-320-3p, miR-674-3p, miR-872-5p) in mesocortical circuit—crucially involved in stress response in order to find differences between susceptible and resilient phenotype. Bioinformatic analysis showed that all miRNAs of interest potentially target serotonin transporter (SERT). Chronic stress caused global increase in the expression of the abovementioned miRNAs in ventral tegmental area (VTA) of stressed rats followed by parallel decrease in miRNA expression in prefrontal cortex (PCx). This effect was more profound in resilient than anhedonic animals. Moreover, we observed decreased level of SERT in VTA of resilient rats. Our findings show that mesocortical circuit is involved in the response to stress and this phenomenon is more efficient in resilient animals.
RationaleFew studies have investigated neurobiological and biochemical differences between stress-resilient and stress-vulnerable experimental animals.ObjectivesWe investigated alterations in mesolimbic dopamine D2 receptor density and mRNA expression level in stressed rats at two time points, i.e. after 2 and 5 weeks of chronic mild stress (CMS).MethodsWe used the chronic mild stress paradigm because it is a well-established animal model of depression. Two groups of stressed rats were distinguished during CMS experiments: (1) stress reactive (70 %), which displayed a decrease in the drinking of a palatable sucrose solution during the stress regimen, and (2) stress resilient (30 %), which exhibited an unaltered drinking profile when compared with the unchallenged control group. [3H]Domperidone was used as a ligand to label dopamine D2 receptors, and a mixture of three specific oligonucleotides was used to evaluate dopamine D2 receptor mRNA changes in various regions of the rat brain.ResultsCMS strongly affected the mesolimbic dopamine circuit in stress-resilient group after 2 weeks and stress-reactive group of rats after 5 weeks which exhibited a decrease in the level of dopamine D2 receptor protein without alterations in D2 mRNA expression. Stress-resilient animals, but not stress-reactive animals, effectively adapted to the extended stress and coped with it. The increase in D2 mRNA expression returned the dopamine D2 receptor density to control levels in stress-resilient rats after 5 weeks of CMS, but not in stress-reactive animals.ConclusionsThese results clearly demonstrate that, despite earlier blunting, the activation of dopamine receptor biosynthesis in the dopamine mesoaccumbens system in stress-resilient rats is involved in active coping with stressful experiences, and it exhibits a delay in time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.