MicroRNAs (miRNAs), a class of small, noncoding RNA molecules, represent important regulators of gene expression. Recent reports have implicated their role in the cell specification process acting as "fine-tuners" to ensure the precise gene expression at the specific stage of cell differentiation. Here, we used retinal organoids differentiated from human pluripotent stem cells (hPSCs) as a model to closely investigate the role of a sensory organ-specific and evolutionary conserved miR-183/96/182 cluster. Using a miRNA tough decoy approach, we inhibited the miR-183/96/182 cluster in hPSCs. Inhibition of the miRNA cluster resulted in an increased expansion of neuroepithelium leading to abnormal "bulged" neural retina in organoids, associated with upregulation of neural-specific and retinal-specific genes. Importantly, we identified PAX6, a well-known essential gene in neuroectoderm specification, as a target of the miR-183/96/182 cluster members. Taken together, the miR-183/96/182 cluster not only represents an important regulator of PAX6 expression, but it also plays a crucial role in retinal tissue morphogenesis.
Considerable amount of research has been focused on dentin mineralization, odontoblast differentiation, and their application in dental tissue engineering. However, very little is known about the differential role of functionally and spatially distinct types of dental epithelium during odontoblast development. Here we show morphological and functional differences in dentin located in the crown and roots of mouse molar and analogous parts of continuously growing incisors. Using a reporter (DSPP‐cerulean/DMP1‐cherry) mouse strain and mice with ectopic enamel (Spry2+/−;Spry4−/−), we show that the different microstructure of dentin is initiated in the very beginning of dentin matrix production and is maintained throughout the whole duration of dentin growth. This phenomenon is regulated by the different inductive role of the adjacent epithelium. Thus, based on the type of interacting epithelium, we introduce more generalized terms for two distinct types of dentins: cementum versus enamel‐facing dentin. In the odontoblasts, which produce enamel‐facing dentin, we identified uniquely expressed genes (Dkk1, Wisp1, and Sall1) that were either absent or downregulated in odontoblasts, which form cementum‐facing dentin. This suggests the potential role of Wnt signalling on the dentin structure patterning. Finally, we show the distribution of calcium and magnesium composition in the two developmentally different types of dentins by utilizing spatial element composition analysis (LIBS). Therefore, variations in dentin inner structure and element composition are the outcome of different developmental history initiated from the very beginning of tooth development. Taken together, our results elucidate the different effects of dental epithelium, during crown and root formation on adjacent odontoblasts and the possible role of Wnt signalling which together results in formation of dentin of different quality. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
MicroRNAs (miRNAs), a class of small, non-coding RNA molecules represent important regulators of gene expression. Recent reports have implicated their role in the cell specification process acting as "fine-tuners" to ensure the precise gene expression at the specific stage of cell differentiation. Here we used retinal organoids differentiated from human pluripotent stem cells (hPSCs) as a model to closely investigate the role of a sensory organ-specific and evolutionary conserved miR-183/96/182 cluster. Using a miRNA tough decoy approach, we inhibited the miR-183/96/182 cluster in hPSCs. Inhibition of the miRNA cluster resulted in an increased expansion of neuroepithelium leading to abnormal "bulged" neural retina in organoids, associated with upregulation of neural-specific and retinal-specific genes. Importantly, we identified PAX6, a well-known essential gene in neuroectoderm specification, as a target of the miR-183/96/182 cluster members. Taken together, the miR-183/96/182 cluster not only represents an important regulator of PAX6 expression, but it also plays a crucial role in retinal tissue morphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.