Endometrial stromal sarcomas (ESSs) are mesenchymal uterine tumors characterized by recurrent genetic events, most commonly chromosomal rearrangements, that create oncogenic gene fusions. High-grade endometrial stromal sarcomas (HG-ESSs), as defined in the 2014 World Health Organization Classification, typically contain oncogenic YWHAE-NUTM2 fusions; however, although not well characterized, there are tumors morphologically overlapping with HG-ESS that do not contain the YWHAE-NUTM2 fusions. These fusions are also found in certain pediatric primitive sarcomas, including clear cell sarcoma of the kidney and soft tissue undifferentiated round cell sarcoma of infancy. A subset of these same pediatric sarcomas lack YWHAE-NUTM2 fusions and instead have internal tandem duplications (ITDs) involving exon 15 of BCOR (BCOR ITD). We investigated the presence of BCOR ITD by targeted sequencing in a series of 31 uterine sarcomas, comprising 5 low-grade ESS, 13 uterine sarcomas diagnosed as HG-ESS, and 13 undifferentiated uterine sarcomas. BCOR ITD were present in 1 uterine sarcoma diagnosed as HG-ESS and 2 undifferentiated sarcomas with uniform nuclear features, all of which lacked any of the recurrent chromosome translocations known to occur in ESS. These 3 high-grade sarcomas with BCOR ITD affected young patients (average age, 24) and morphologically were composed of nonpleomorphic spindle cells admixed with epithelioid and round cell areas. Focal myxoid stroma was present in 2 cases. Mitotic activity was brisk, necrosis was present, and there was lymphovascular involvement in all cases. The 3 uterine sarcomas with BCOR ITD exhibited diffuse cyclin D1 immunohistochemical expression and there was diffuse BCOR expression in the 2 cases tested. Long-term follow-up in 2 patients revealed 1 to be tumor-free after 22 years and the other to die of disease after 8 years. In conclusion, BCOR ITD is an oncogenic alternative to YWHAE-NUTM2 fusion in high-grade uterine sarcomas with uniform nuclear features. We propose that neoplasms with the morphology described and BCOR ITD be regarded as a unique subtype of high-grade uterine sarcoma, possibly within the family of endometrial stromal neoplasia.
Eight million people die of cancer each year and 90% of deaths are caused by systemic disease. Circulating tumor cells (CTCs) contribute to the formation of metastases and thus are the subject of extensive research and an abiding interest to biotechnology and pharmaceutical companies. Recent technological advances have resulted in greatly improved CTC detection, enumeration, expansion, and culture methods. However, despite the fact that nearly 150 years have passed since the first detection and description of CTCs in human blood and enormous technological progress that has taken place in this field, especially within the last decade, few CTC detection methods have been approved for routine clinical use. This reflects the substantial methodological problems related to the nature of these cells, their heterogeneity, and diverse metastatic potential. Here, we provide an overview of CTC phenotypes, including the plasticity of CTCs and the relevance of inflammation and cell fusion phenomena for CTC biology. We also review the literature on CTC detection methodology-its recent improvements, clinical significance, and efforts of its clinical application in cancer patients management. At present, CTC detection remains a challenging diagnostic approach as a result of numerous current methodological limitations. This is especially problematic during the early stages of the disease due to the small numbers of CTCs released into the blood of cancer patients. Nonetheless, the rapid development of novel techniques of CTC detection and enumeration in peripheral blood is expected to expedite their implementation in the clinical setting. It is of utmost importance to understand the biology of CTCs and their distinct populations as a prerequisite for achieving this ultimate goal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.