Przybycien-Szymanska MM, Rao YS, Pak TR. Binge-pattern alcohol exposure during puberty induces sexually dimorphic changes in genes regulating the HPA axis. Am J Physiol Endocrinol Metab 298: E320 -E328, 2010. First published December 1, 2009; doi:10.1152/ajpendo.00615.2009.-Maternal alcohol consumption during critical periods of fetal brain development leads to devastating long-term consequences on adult reproductive physiology, cognitive function, and social behaviors. However, very little is known about the long-term consequences of alcohol consumption during puberty, which is perhaps an equally dynamic and critical period of brain development. Alcohol abuse during adulthood has been linked with an increase in clinically diagnosed anxiety disorders, yet the etiology and neurochemical mechanisms of alcohol-induced anxiety behavior is unknown. In this study, we determined the effects of binge ethanol exposure during puberty on two critical central regulators of stress and anxiety behavior: corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP). Our results showed that ethanol increased plasma corticosterone (CORT) levels in both sexes, yet binge-treated animals had significantly lower CORT levels than animals exposed to a single dose, suggesting that the hypothalamo-pituitary-adrenal (HPA) axis habituated to the repeated stressful stimuli of ethanol. Binge ethanol exposure also significantly increased CRH and AVP gene expression in the paraventricular nucleus of males, but not females. Overall, our results demonstrate that binge ethanol exposure during puberty changes the central expression of stress-related genes in a sex-specific manner, potentially leading to permanent dysregulation of the HPA axis and long-term behavioral consequences.hypothalamus; puberty; arginine vasopressin; corticotrophin-releasing hormone; corticosterone; hypothalamo-pituitary-adrenal axis ALCOHOL ABUSE DURING ADOLESCENCE is a growing fundamental heath concern in the United States. According to the US Department of Health and Human Services, boys on average have had their first drink before age 11, and girls before age 13, with the overall statistics showing that 41% of teenagers have had their first drink by age 14. Underage drinkers typically adopt a "binge" pattern of alcohol consumption, defined by the National Institute on Alcohol Abuse and Alcoholism as heavy, episodic drinking in which enough alcohol is consumed in one sitting to bring the blood alcohol concentration (BAC) Ͼ0.08 g/100 g (55). During adolescence, significant neural remodeling occurs as evidenced by changes in cortical gray matter (22,29,37), neurogenesis (40), and increased synaptic connectivity (14,49,57), raising the possibility that alcohol consumption during this critical period can lead to long-term neurobiological and behavioral defects.One neurological system that undergoes extensive plasticity during pubertal development is the hypothalamo-pituitaryadrenal (HPA) axis (46). Under normal physiological conditions, an acute psychological or ph...
Adolescence is a dynamic and important period of brain development however, little is known about the long-term neurobiological consequences of alcohol consumption during puberty. Our previous studies showed that binge-pattern ethanol (EtOH) treatment during pubertal development negatively dysregulated the responsiveness of the hypothalamo-pituitary-adrenal (HPA) axis, as manifested by alterations in corticotrophin-releasing hormone (CRH), arginine vasopressin (AVP), and corticosterone (CORT) during this time period. Thus, the primary goal of this study was to determine whether these observed changes in important central regulators of the stress response were permanent or transient. In this study, juvenile male Wistar rats were treated with a binge-pattern EtOH treatment paradigm or saline alone for 8 days. The animals were left undisturbed until adulthood when they received a second round of treatments consisting of saline alone, a single dose of EtOH, or a second binge-pattern treatment paradigm. The results showed that pubertal binge-pattern EtOH exposure induced striking long-lasting alterations of many HPA axis parameters. Overall, our data provide strong evidence that binge-pattern EtOH exposure during pubertal maturation has long-term detrimental effects for the healthy development of the HPA axis.
Adolescent binge alcohol abuse induces long-term changes in gene expression, which impacts the physiological stress response and memory formation, two functions mediated in part by the ventral (VH) and dorsal (DH) hippocampus. microRNAs (miRs) are small RNAs that play an important role in gene regulation and are potential mediators of long-term changes in gene expression. Two genes important for regulating hippocampal functions include brain-derived neurotrophic factor (BDNF) and sirtuin-1 (SIRT1), which we identified as putative gene targets of miR-10a-5p, miR-26a, miR-103, miR-495. The purpose of this study was to quantify miR-10a-5p, miR-26a, miR-103, miR-495 expression levels in the dorsal and ventral hippocampus of male Wistar rats during normal pubertal development and then assess the effects of repeated binge-EtOH exposure. In addition, we measured the effects of binge EtOH-exposure on hippocampal Drosha and Dicer mRNA levels, as well as the putative miR target genes, BDNF and SIRT1. Overall, mid/peri-pubertal binge EtOH exposure altered the normal expression patterns of all miRs tested in an age- and brain region-dependent manner and this effect persisted for up to 30 days post-EtOH exposure. Moreover, our data revealed that mid/peri-pubertal binge EtOH exposure significantly affected miR biosynthetic processing enzymes, Drosha and Dicer. Finally, EtOH-induced significant changes in the expression of a subset of miRs, which correlated with changes in the expression of their predicted target genes. Taken together, these data demonstrate that EtOH exposure during pubertal development has long-term effects on miRNA expression in the rat hippocampus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.