In the frame of the Copernicus programme, ESA has developed and launched the Sentinel-2 optical imaging mission that delivers optical data products designed to feed downstream services mainly related to land monitoring, emergency management and security. The Sentinel-2 mission is the constellation of two polar orbiting satellites Sentinel-2A and Sentinel-2B, each one equipped with an optical imaging sensor MSI (Multi-Spectral Instrument). Sentinel-2A was launched on June 23 rd , 2015 and Sentinel-2B followed on March 7 th , 2017. With the beginning of the operational phase the constellation of both satellites enable image acquisition over the same area every 5 days or less. To use unique potential of the Sentinel-2 data for land applications and ensure the highest quality of scientific exploitation, accurate correction of satellite images for atmospheric effects is required. Therefore the atmospheric correction processor Sen2Cor was developed by Telespazio VEGA Deutschland GmbH on behalf of ESA. Sen2Cor is a Level-2A processor which main purpose is to correct single-date Sentinel-2 Level-1C Top-Of-Atmosphere (TOA) products from the effects of the atmosphere in order to deliver a Level-2A Bottom-Of-Atmosphere (BOA) reflectance product. Additional outputs are an Aerosol Optical Thickness (AOT) map, a Water Vapour (WV) map and a Scene Classification (SCL) map with Quality Indicators for cloud and snow probabilities. Telespazio France and DLR have teamed up in order to provide the calibration and validation of the Sen2Cor processor. Here we provide an overview over the Sentinel-2 data, processor and products. It presents some processing examples of Sen2Cor applied to Sentinel-2 data, provides up-to-date information about the Sen2Cor release status and recent validation results at the time of the SPIE Remote Sensing 2017.
Sen2Cor is a Level-2A processor designed to correct Sentinel-2 Level-1C products from the effects of the atmosphere in order to deliver a Level-2A surface reflectance product. ESA has been using Sen2Cor for systematic Level-2A processing of Sentinel-2 acquisitions over Europe since June 2017. It has since then been successfully integrated into Sentinel-2 ground segment (PDGS) with a global production over the World started in December 2018. In this manuscript, the Level-2A product and algorithm are presented. The performance of this operational Level-2A product is described in terms of cloud screening accuracy and atmospheric correction accuracy. Finally, the ongoing parallel developments aimed at improving the product quality at global scale in terms of cloud screening and atmospheric correction are discussed.
Understanding the potential of forest ecosystems as global carbon sinks requires a thorough knowledge of forest carbon dynamics, including both sequestration and fluxes among multiple pools. The accurate quantification of biomass is important to better understand forest productivity and carbon cycling dynamics. Stand-based inventories (SBIs) are widely used for quantifying forest characteristics and for estimating biomass, but information may quickly become outdated in dynamic forest environments. Satellite remote sensing may provide a supplement or substitute. We tested the accuracy of aboveground biomass estimates modeled from a combination of Landsat Thematic Mapper (TM) imagery and topographic data, as well as SBI-derived variables in a Picea abies forest in the Western Carpathian Mountains. We employed Random Forests for non-parametric, regression tree-based modeling. Results indicated a difference in the importance of SBI-based and remote sensing-based predictors when estimating aboveground biomass. The most accurate models for biomass prediction ranged from a correlation coefficient of 0.52 for the TM-and topography-based model, to 0.98 for the inventory-based model. While Landsat-based biomass estimates were measurably less accurate than those derived from SBI, adding tree height or stand-volume as a field-based predictor to TM and topography-based models increased performance to 0.36 and 0.86, OPEN ACCESSRemote Sens. 2011, 3 1428 respectively. Our results illustrate the potential of spectral data to reveal spatial details in stand structure and ecological complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.