Mapping the impact of pregnancy on the human brain is essential for understanding the neurobiology of maternal caregiving. Recently, we found that pregnancy leads to a long‐lasting reduction in cerebral gray matter volume. However, the morphometric features behind the volumetric reductions remain unexplored. Furthermore, the similarity between these reductions and those occurring during adolescence, another hormonally similar transitional period of life, still needs to be investigated. Here, we used surface‐based methods to analyze the longitudinal magnetic resonance imaging data of a group of 25 first‐time mothers (before and after pregnancy) and compare them to those of a group of 25 female adolescents (during 2 years of pubertal development). For both first‐time mothers and adolescent girls, a monthly rate of volumetric reductions of 0.09 mm3 was observed. In both cases, these reductions were accompanied by decreases in cortical thickness, surface area, local gyrification index, sulcal depth, and sulcal length, as well as increases in sulcal width. In fact, the changes associated with pregnancy did not differ from those that characterize the transition during adolescence in any of these measures. Our findings are consistent with the notion that the brain morphometric changes associated with pregnancy and adolescence reflect similar hormonally primed biological processes.
Previous studies have associated Attention-Deficit/Hyperactivity Disorder (ADHD) with a maturational lag of brain functional networks. Functional connectivity of the human brain changes from primarily local to more distant connectivity patterns during typical development. Under the maturational lag hypothesis, we expect children with ADHD to exhibit increased local connectivity and decreased distant connectivity compared with neurotypically developing (ND) children. We applied a graph-theory method to compute local and distant connectivity levels and cross-sectionally compared them in a sample of 120 children with ADHD and 120 age-matched ND children (age range = 7-17 years). In addition, we measured if potential group differences in local and distant connectivity were stable across the age range considered. Finally, we assessed the clinical relevance of observed group differences by correlating the connectivity levels and ADHD symptoms severity separately for each group. Children with ADHD exhibited more local connectivity than age-matched ND children in multiple brain regions, mainly overlapping with default mode, fronto-parietal and ventral attentional functional networks (p < .05- threshold free-cluster enhancement-family-wise error). We detected an atypical developmental pattern of local connectivity in somatomotor regions, that is, decreases with age in ND children, and increases with age in children with ADHD. Furthermore, local connectivity within somatomotor areas correlated positively with clinical severity of ADHD symptoms, both in ADHD and ND children. Results suggest an immature functional state of multiple brain networks in children with ADHD. Whereas the ADHD diagnosis is associated with the integrity of the system comprising the fronto-parietal, default mode and ventral attentional networks, the severity of clinical symptoms is related to atypical functional connectivity within somatomotor areas. Additionally, our findings are in line with the view of ADHD as a disorder of deviated maturational trajectories, mainly affecting somatomotor areas, rather than delays that normalize with age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.