The batericidal effects of antimicrobial photodynamic therapy (aPDT), using methylene blue as a photosensitizer and pulsed red LED light for activation, were tested in various environments in vitro and in a wound model in mice infected with a fecal bacterial suspension.
Photobiomodulation, showing positive effects on wound healing processes, has been performed mainly with lasers in the red/infrared spectrum. Light of shorter wavelengths can significantly influence biological systems. This study aimed to evaluate and compare the therapeutic effects of pulsed LED light of different wavelengths on wound healing in a diabetic (db/db) mouse excision wound model. LED therapy by Repuls was applied at either 470 nm (blue), 540 nm (green) or 635 nm (red), at 40 mW/cm2 each. Wound size and wound perfusion were assessed and correlated to wound temperature and light absorption in the tissue. Red and trend-wise green light positively stimulated wound healing, while blue light was ineffective. Light absorption was wavelength-dependent and was associated with significantly increased wound perfusion as measured by laser Doppler imaging. Shorter wavelengths ranging from green to blue significantly increased wound surface temperature, while red light, which penetrates deeper into tissue, led to a significant increase in core body temperature. In summary, wound treatment with pulsed red or green light resulted in improved wound healing in diabetic mice. Since impeded wound healing in diabetic patients poses an ever-increasing socio-economic problem, LED therapy may be an effective, easily applied and cost-efficient supportive treatment for diabetic wound therapy.
In skin research, widely used in vitro 2D monolayer models do not sufficiently mimic physiological properties. To replace, reduce, and refine animal experimentation in the spirit of ‘3Rs’, new approaches such as 3D skin equivalents (SE) are needed to close the in vitro/in vivo gap. Cell culture inserts to culture SE are commercially available, however, these inserts are expensive and of limited versatility regarding experimental settings. This study aimed to design novel cell culture inserts fabricated on commercially available 3D printers for the generation of full-thickness SE. A computer-aided design model was realized by extrusion-based 3D printing of polylactic acid filaments (PLA). Improvements in the design of the inserts for easier and more efficient handling were confirmed in cell culture experiments. Cytotoxic effects of the final product were excluded by testing the inserts in accordance with ISO-norm procedures. The final versions of the inserts were tested to generate skin-like 3D scaffolds cultured at an air–liquid interface. Stratification of the epidermal component was demonstrated by histological analyses. In conclusion, here we demonstrate a fast and cost-effective method for 3D-printed inserts suitable for the generation of 3D cell cultures. The system can be set-up with common 3D printers and allows high flexibility for generating customer-tailored cell culture plastics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.