Cadmium (Cd) is a heavy metal belonging to the group of the main chemical pollutants of the natural and occupational environment in economically developed countries. The forecasts indicate that contamination of the environment with this toxic metal, and thus the exposure of the general population, will increase. Food (particularly plant products) is the main source of the general population exposure to this element. Moreover, an important, and often the main, source of intoxication with Cd is habitual tobacco smoking. Recent epidemiological studies have provided numerous evidence that even low-level environmental exposure to this toxic metal, nowadays occurring in numerous economically developed countries, creates a risk for health of the general population. The low-level lifetime exposure to this metal may lead to the damage to the kidneys, liver, skeletal system, and cardiovascular system, as well as to the deterioration of the sight and hearing. Moreover, it has been suggested that environmental exposure to this xenobiotic may contribute to the development of cancer of the lung, breast, prostate, pancreas, urinary bladder, and nasopharynx. Taking the above into account, the aim of this review article is to draw more attention to Cd as an environmental risk factor for the health of the general population and the need to undertake preventive actions allowing to reduce the risk of health damage due to a lifetime exposure to this toxic metal.
The study investigated, in a rat model of low-level and moderate environmental exposure to cadmium (Cd; 1 or 5 mg Cd/kg diet, respectively, for 3 to 24 months), whether the co-administration of 0.1% extract from Aronia melanocarpa L. berries (AE) may protect against oxidative stress in the liver and in this way mediate this organ status. The intoxication with Cd, dose- and duration-dependently, weakened the enzymatic antioxidative barrier, decreased the concentrations of reduced glutathione and total thiol groups, and increased the concentrations of oxidized glutathione, hydrogen peroxide, xanthine oxidase, and myeloperoxidase in this organ. These resulted in a decrease in the total antioxidative status, increase in the total oxidative status and development of oxidative stress (increased oxidative stress index and malondialdehyde concentration) and histopathological changes in the liver. The administration of AE at both levels of Cd treatment significantly improved the enzymatic and nonenzymatic antioxidative barrier, decreased pro-oxidant concentration, and protected from the development of oxidative stress in the liver and changes in its morphology, as well as normalized the serum activities of liver enzymes markers. In conclusion, consumption of aronia products may prevent Cd-induced destroying the oxidative/antioxidative balance and development of oxidative stress in the liver protecting against this organ damage.
It was investigated, using a female rat model of low and moderate exposure of human to cadmium (Cd, 1 and 5 mg Cd/kg diet for 3–24 months), whether a polyphenol-rich 0.1% aqueous extract from Aronia melanocarpa L. berries (AE) may prevent Cd-induced lipid peroxidation and oxidative modifications of proteins and deoxyribonucleic acid (DNA) in the liver. For this purpose, markers of lipid peroxidation (lipid peroxides and 8-isoprostane) and oxidative injury of proteins (protein carbonyl groups and 3-nitrotyrosine) and DNA (8-hydroxy-2′-deoxyguanosine) were measured in this organ. The expression of metallothionein 1 (MT1) and metallothionein 2 (MT2) genes was estimated for a better explanation of the possible mechanisms of protective action of AE against Cd hepatotoxicity. The low and moderate treatment with Cd induced lipid peroxidation and oxidatively modified proteins and DNA, as well as enhanced the expression of MT1 and MT2 in the liver, whereas the co-administration of AE completely prevented almost all of these effects. The results allow us to conclude that the consumption of aronia products under exposure to Cd may offer protection against oxidative injury of the main cellular macromolecules in the liver, including especially lipid peroxidation, and in this way prevent damage to this organ.
Recently, the growing attention of the scientific community has been focused on the threat to health created by environmental pollutants, including toxic metals such as cadmium (Cd), and on the need of finding effective ways to prevent and treat the unfavorable health effects of exposure to them. Particularly promising for Cd, and thus arousing the greatest interest, is the possibility of using various ingredients present in plants, including mainly polyphenolic compounds. As the liver is one of the target organs for this toxic metal and disturbances in the proper functioning of this organ have serious consequences for health, the aim of the present review was to discuss the possibility of using polyphenol-rich food products (e.g., chokeberry, black and green tea, blueberry, olive oil, rosemary and ginger) as the strategy in protection from this xenobiotic hepatotoxicity and treatment of this heavy metal-induced liver damage. Owing to the ability of polyphenols to bind ions of Cd and the strong antioxidative potential of these compounds, as well as their abundance in dietary products, it seems to be of high importance to consider the possibility of using polyphenols as potential preventive and therapeutic agents against Cd hepatotoxicity, determined by its strong pro-oxidative properties. Although most of the data on the effectiveness of polyphenols comes from studies in animals, the fact that some of them are derived from experimental models that reflect human exposure to this metal allows us to assume that some polyphenol-rich food products may be promising protective agents against Cd hepatotoxicity in humans.
The hypothesis that the consumption of Aronia melanocarpa berries (chokeberries) extract, recently reported by us to improve bone metabolism in female rats at low-level and moderate chronic exposure to cadmium (1 and 5 mg Cd/kg diet for up to 24 months), may increase the bone resistance to fracture was investigated. Biomechanical properties of the neck (bending test with vertical head loading) and diaphysis (three-point bending test) of the femur of rats administered 0.1% aqueous chokeberry extract (65.74% of polyphenols) or/and Cd in the diet (1 and 5 mg Cd/kg) for 3, 10, 17, and 24 months were evaluated. Moreover, procollagen I was assayed in the bone tissue. The low-level and moderate exposure to Cd decreased the procollagen I concentration in the bone tissue and weakened the biomechanical properties of the femoral neck and diaphysis. Chokeberry extract administration under the exposure to Cd improved the bone collagen biosynthesis and femur biomechanical properties. The results allow for the conclusion that the consumption of chokeberry products under exposure to Cd may improve the bone biomechanical properties and protect from fracture. This study provides support for Aronia melanocarpa berries being a promising natural agent for skeletal protection under low-level and moderate chronic exposure to Cd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.