Nitric oxide (•NO) has a multitude of physiological roles, including the ability to protect cells against oxidant‐induced killing, e.g. by inhibiting caspase‐mediated apoptosis or by intercepting damaging free radicals derived from membrane lipids. The purpose of this study was to test the hypothesis that low flux •NO acting in the latter fashion can enhance tumor‐cell resistance to photodynamic killing, specifically that sensitized by 5‐aminolevulinic acid (ALA)–derived protoporphyrin IX (PpIX). Preliminary model experiments with iron‐ascorbate–treated, PpIX‐sensitized liposomes showed that spermine NONOate (SPER/NO)–derived •NO had no effect on photoinduced accumulation of primary singlet oxygen adducts, e.g. the cholesterol hydroperoxide 5α‐OOH, but dose‐dependently inhibited the buildup of free radical–generated oxidation products arising from one‐electron turnover of primary peroxides. In subsequent studies, breast tumor COH‐BR1 cells in serum‐free medium were treated with 1 mM ALA for 15 min and then without ALA for 3.75 h, allowing biogenerated PpIX to diffuse to extramitochondrial sites, including plasma membrane. Cells were irradiated in the absence or presence of SPER/NO and compared for peroxidative damage and Hoechst‐assessed viability after 5 h in the dark. Iron‐stimulated necrotic photokilling and accumulation of chain lipid peroxidation products were observed, and this was inhibited strongly by SPER/NO, but not by decomposed SPER/NO, confirming that •NO was the active agent. When introduced after irradiation, •NO became progressively less inhibitory, consistent with ongoing but waning free‐radical activity. These findings provide new insights into the possible role of •NO in tumor resistance to ALA–photodynamic therapy and other photodynamic treatments.
Nitric oxide (.NO) has a multitude of physiological roles, including the ability to protect cells against oxidant-induced killing, e.g. by inhibiting caspase-mediated apoptosis or by intercepting damaging free radicals derived from membrane lipids. The purpose of this study was to test the hypothesis that low flux .NO acting in the latter fashion can enhance tumor-cell resistance to photodynamic killing, specifically that sensitized by 5-aminolevulinic acid (ALA)-derived protoporphyrin IX (PpIX). Preliminary model experiments with iron-ascorbate-treated, PpIX-sensitized liposomes showed that spermine NONOate (SPER/NO)-derived .NO had no effect on photoinduced accumulation of primary singlet oxygen adducts, e.g. the cholesterol hydroperoxide 5 alpha-OOH, but dose-dependently inhibited the buildup of free radical-generated oxidation products arising from one-electron turnover of primary peroxides. In subsequent studies, breast tumor COH-BR1 cells in serum-free medium were treated with 1 mM ALA for 15 min and then without ALA for 3.75 h, allowing biogenerated PpIX to diffuse to extramitochondrial sites, including plasma membrane. Cells were irradiated in the absence or presence of SPER/NO and compared for peroxidative damage and Hoechst-assessed viability after 5 h in the dark. Iron-stimulated necrotic photo-killing and accumulation of chain lipid peroxidation products were observed, and this was inhibited strongly by SPER/NO, but not by decomposed SPER/NO, confirming that .NO was the active agent. When introduced after irradiation, .NO became progressively less inhibitory, consistent with ongoing but waning free-radical activity. These findings provide new insights into the possible role of .NO in tumor resistance to ALA-photodynamic therapy and other photo-dynamic treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.