Background: Each of the techniques used in sport is a complex technique requiring a combination of neuromuscular conduction, motor anticipation, and extremely developed proprioception. This is especially the case in martial arts when we deal with a kick or a blow to a specific target. Methods: The main purpose of this study was to determine the kinematic differences in the tested movement pattern among athletes with different levels of advancement in the conditions of kicking: in the air, at a target (a shield), and in direct contact with a competitor. Comparative analysis was performed among 26 players: 13 advanced (group G1) and 13 beginners (group G2). Kinematic data was recorded using an optical motion capture system. The examination consisted of performing three tests of mae-geri kick in sequences of three kicks in three different conditions (without a target, with a static target, and with an opponent). The examination was performed with the back leg and only the moment of kick was analyzed. Results: The most significant differences were observed in the movement of head, torso, hip, knee, and ankle segments, especially during a kick at a shield. Based on the conducted analysis, we can assume that karate training changes the strategy of neuromuscular control, promoting improvement of mobility pattern efficiency. Conclusion: Acquiring this type of knowledge can lead to better results, elimination of errors in training, especially in the initial period of training, and the prevention of possible injuries that occur during exercise or competition.
Human motion capture is commonly used in various fields, including sport, to analyze, understand, and synthesize kinematic and kinetic data. Specialized computer vision and marker-based optical motion capture techniques constitute the gold-standard for accurate and robust human motion capture. The dataset presented consists of recordings of 37 Kyokushin karate athletes of different ages (children, young people, and adults) and skill levels (from 4th dan to 9th kyu) executing the following techniques: reverse lunge punch (Gyaku-Zuki), front kick (Mae-Geri), roundhouse kick (Mawashi-Geri), and spinning back kick (Ushiro-Mawashi-Geri). Each technique was performed approximately three times per recording (i.e., to create a single data file), and under three conditions where participants kicked or punched (i) in the air, (ii) a training shield, or (iii) an opponent. Each participant undertook a minimum of two trials per condition. The data presented was captured using a Vicon optical motion capture system with Plug-In Gait software. Three dimensional trajectories of 39 reflective markers were recorded. The resultant dataset contains a total of 1,411 recordings, with 3,229 single kicks and punches. The recordings are available in C3D file format. The dataset provides the opportunity for kinematic analysis of different combat sport techniques in attacking and defensive situations.
Optical motion capture systems are state-of-the-art in motion acquisition; however, like any measurement system they are not error-free: noise is their intrinsic feature. The works so far mostly employ a simple noise model, expressing the uncertainty as a simple variance. In the work, we demonstrate that it might be not sufficient and we prove the existence of several types of noise and demonstrate how to quantify them using Allan variance. Such a knowledge is especially important for using optical motion capture to calibrate other techniques, and for applications requiring very fine quality of recording. For the automated readout of the noise coefficients, we solve the multidimensional regression problem using sophisticated metaheuristics in the exploration-exploitation scheme. We identified in the laboratory the notable contribution to the overall noise from white noise and random walk, and a minor contribution from blue noise and flicker, whereas the violet noise is absent. Besides classic types of noise we identified the presence of the correlated noises and periodic distortion. We analyzed also how the noise types scale with an increasing number of cameras. We had also the opportunity to observe the influence of camera failure on the overall performance.
The ability of the locomotor system to maintain continuous walking despite very small external or internal disturbances is called local dynamic stability (LDS). The importance of the LDS requires constantly working on different aspects of its assessment method which is based on the short-term largest Lyapunov exponent (LLE). A state space structure is a vital aspect of the LDS assessment because the algorithm of the LLE computation for experimental data requires a reconstruction of a state space trajectory. The gait kinematic data are usually one- or three-dimensional, which enables to construct a state space based on a uni- or multivariate time series. Furthermore, two variants of the short-term LLE are present in the literature which differ in length of a time span, over which the short-term LLE is computed. Both a state space structure and the consistency of the observations based on values of both short-term LLE variants were analyzed using time series representing the joint angles at ankle, knee, and hip joints. The short-term LLE was computed for individual joints in three state spaces constructed on the basis of either univariate or multivariate time series. Each state space revealed walkers’ locally unstable behavior as well as its attenuation in the current stride. The corresponding conclusions made on the basis of both short-term LLE variants were consistent in ca. 59% of cases determined by a joint and a state space. Moreover, the authors present an algorithm for estimation of the embedding dimension in the case of a multivariate gait time series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.