Trichothecene mycotoxins are sesquiterpenoid compounds primarily produced by fungi in taxonomical genera such as Fusarium, Myrothecium, Stachybotrys, Trichothecium, and others, under specific climatic conditions on a worldwide basis. Fusarium mold is a major plant pathogen and produces a number of trichothecene mycotoxins including deoxynivalenol (or vomitoxin), nivalenol, diacetoxyscirpenol, and T-2 toxin, HT-2 toxin. Monogastrics are sensitive to vomitoxin, while poultry and ruminants appear to be less sensitive to some trichothecenes through microbial metabolism of trichothecenes in the gastrointestinal tract. Trichothecene mycotoxins occur worldwide however both total concentrations and the particular mix of toxins present vary with environmental conditions. Proper agricultural practices such as avoiding late harvests, removing overwintered stubble from fields, and avoiding a corn/wheat rotation that favors Fusarium growth in residue can reduce trichothecene contamination of grains. Due to the vague nature of toxic effects attributed to low concentrations of trichothecenes, a solid link between low level exposure and a specific trichothecene is difficult to establish. Multiple factors, such as nutrition, management, and environmental conditions impact animal health and need to be evaluated with the knowledge of the mycotoxin and concentrations known to cause adverse health effects. Future research evaluating the impact of low-level exposure on livestock may clarify the potential impact on immunity. Trichothecenes are rapidly excreted from animals, and residues in edible tissues, milk, or eggs are likely negligible. In chronic exposures to trichothecenes, once the contaminated feed is removed and exposure stopped, animals generally have an excellent prognosis for recovery. This review shows the occurrence of trichothecenes in food and feed in 2011–2020 and their toxic effects and provides a summary of the discussions on the potential public health concerns specifically related to trichothecenes residues in foods associated with the exposure of farm animals to mycotoxin-contaminated feeds and impact to human health. Moreover, the article discusses the methods of their detection.
Preparation of biodegradable packaging materials and valorisation of food industry residues to achieve “zero waste” goals is still a major challenge. Herein, biopolymer-based (carboxymethyl cellulose—CMC) bioactive films were prepared by the addition, alone or in combination, of carvacrol and fungal melanin isolated from champignon mushroom (Agaricus bisporus) agro-industrial residues. The mechanical, optical, thermal, water vapour, and UV-Vis barrier properties were studied. Fourier-transform infrared (FT-IR) spectroscopy studies were carried out to analyse the chemical composition of the resulting films. Antibacterial, antifungal, and antioxidant activities were also determined. Both CMC/melanin and CMC/melanin/carvacrol films showed some antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans. The addition of melanin increased the UV-blocking, mechanical, water vapour barrier, and antioxidant properties without substantially reducing the transparency of the films. The addition of carvacrol caused loss of transparency, however, composite CMC/melanin/carvacrol films showed excellent antioxidant activity and enhanced mechanical strength. The developed bioactive biopolymer films have a good potential to be green bioactive alternatives to plastic films in food packaging applications.
Cereals and soybean are the main components of pig diets. Unfortunately, feed materials are often contaminated with fungi and their metabolites, which pose a potential threat to human and animal health. Therefore, this study was undertaken to evaluate the effectiveness of cultural methods and quantitative PCR for detecting fungi and their metabolites in pig diets, and to determine which plant components are responsible for mycotoxin contamination of feed. The presence of mycotoxin-producing fungi of the genera Fusarium, Penicillium and Aspergillus and their metabolites was determined in pig diets with different inclusion levels of various cereals and transgenic soybean meal. Six farm-made complete diets containing locally produced feed materials and imported soybean meal were investigated. The presence of the following fungi in pig diets was determined by microscopic observations of fungal cultures and by qPCR: trichothecene-producing Fusarium spp. (Tri5 gene), Penicillium verrucosum (rRNA) and Aspergillus ochraceus (PKS gene). The concentrations of mycotoxins (ochratoxin A (OTA) and zearalenone (ZEA)), trichothecenes (deoxynivalenol (DON), 3-acetyl-deoxynivalenol and T-2 toxin (T-2)) were analysed by HPLC. The results of the qPCR analysis demonstrated that the presence of DNA of mycotoxin-producing fungi and mycotoxins in pig diets was correlated with the inclusion levels of transgenic soybean meal and various cereals. The above correlation was validated by an analysis of Spearman’s rank correlation between the content of transgenic soybean meal and various cereals vs mycotoxin concentrations and the amount of DNA of toxin-producing fungi in pig diets. A significant positive correlation was found between: the percentage content of soybeans vs the concentrations of DON (R=0.93), trichothecenes (R=0.76) and T-2 (R=0.64), the percentage content of barley vs the concentrations of DON (R=0.50) and T-2 (R=0.49), the percentage content of triticale vs OTA levels (R=0.47), the percentage content of oats vs ZEA levels (0.50). A correlation was also noted between the percentage content of soybeans and the amount of DNA of trichothecene-producing Fusarium spp. (R=0.96). The results of this study indicate that pig diets are significantly contaminated with toxin-producing fungi and their metabolites, and that the quantification of DNA of mycotoxin-producing fungi is a reliable indicator of mycotoxin contamination of feed. Our findings can contribute to reducing the costs of analyses that should be routinely performed to minimise the entry of mycotoxins into the food chain.
The purpose of this study was to evaluate the fatty acid composition, including trans C18:1 and C18:2 isomers and the content of conjugated linoleic acid cis9trans11 C18:2 (CLA), in commercial smoked and unsmoked cheeses and cheese-like products available on the Polish market as well as to compare lipid quality indices in these products. The composition of fatty acids was determined with the gas chromatography method. The conducted study demonstrated that smoked and unsmoked cheeses as well as smoked and unsmoked cheese-like products were characterized by various contents of fatty acids and various lipid quality indices. The smoked and the unsmoked cheeses had significantly higher (p < 0.05) contents of saturated fatty acids (SFA), short-chain fatty acids (SCFA), and branched-chain fatty acids (BCFA) than the smoked and the unsmoked cheese-like products. The monounsaturated fatty acids (MUFA) and the polyunsaturated fatty acids (PUFA) contents were the highest in unsmoked cheese-like products (39.29 ± 1.49% and 9.13 ± 0.33%, respectively). In smoked and unsmoked cheeses, MUFA were above 24% and PUFA were above 2.4%. The total content of trans C18:1 isomers was significantly higher (p < 0.05) in the cheeses, but in the group of these isomers, trans10 + trans11 isomers were dominant. High levels of trans6–trans9 isomers (up to 2.92% of total fatty acid) were found in some of the samples of unsmoked cheese-like products, while their content in cheeses was lower. The lipid quality indices in cheeses and cheese-like products were varied. The smoked and the unsmoked cheeses were characterized by significantly higher (p < 0.05) values of the index of thrombogenicity (TI) and atherogenicity (AI) indices and significantly lower (p < 0.05) values of the hypocholesterolemic/hypercholesterolemic (HH) ratio.
The study examined the effects of various methods of thermal treatment of Lord cultivar potato tubers on changes in starch, polyphenols, vitamin C, antioxidant activity, and mineral compounds. Following heat treatment in order to determine further transformations of starch, the potatoes were stored at 2°C/24 h. Changes in starch, bioactive compounds and antioxidant properties varied depending on the treatment method. In general, higher retention of bioactive compounds was noted for tubers treated with "dry" methods, such as microwaving or grilling than for tubers treated with "wet" methods, e.g., boiling in water, steam cooking or cooking in a combi oven. These samples were also characterised by a higher resistant starch content. Cold storage resulted in an increase in the proportion of resistant starch. Total phenols content ranged from 210.96 (boiling) to 348.46 mg/100 g DW (grilling) and vitamin C content ranged from 43.79 (boiling) to 68.83 mg/100 g DW (microwaving). DPPH radical scavenging activity was the highest for the grilled tubers. The results indicate microwaving and grilling as the most favourable thermal treatments of potato.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.