In this study, we demonstrate that malignant mature CD4+ T lymphocytes derived from cutaneous T cell lymphomas (CTCL) variably display some aspects of the T regulatory phenotype. Whereas seven cell lines representing a spectrum of primary cutaneous T cell lymphoproliferative disorders expressed CD25 and TGF-β, the expression of FOXP3 and, to a lesser degree, IL-10 was restricted to two CTCL cell lines that are dependent on exogeneous IL-2. IL-2, IL-15, and IL-21, all of which signals through receptors containing the common γ chain, induced expression of IL-10 in the IL-2-dependent cell lines as well as primary leukemic CTCL cells. However, only IL-2 and IL-15, but not IL-21, induced expression of FOXP3. The IL-2-triggered induction of IL-10 and FOXP3 expression occurred by signaling through STAT3 and STAT5, respectively. Immunohistochemical analysis of the CTCL tissues revealed that FOXP3-expressing cells were common among the CD7-negative enlarged atypical and small lymphocytes at the early skin patch and plaque stages. Their frequency was profoundly diminished at the tumor stage and in the CTCL lymph node lesions with or without large cell transformation. These results indicate that the T regulatory cell features are induced in CTCL T cells by common γ chain signaling cytokines such as IL-2 and do not represent a fully predetermined, constitutive phenotype independent of the local environmental stimuli to which these malignant mature CD4+ T cells become exposed.
Fragile Histidine Triad (Fhit) gene deletion, methylation, and reduced Fhit protein expression occur in about 70% of human epithelial tumors and, in some cancers, are clearly associated with tumor progression. Specific Fhit signal pathways have not been identified, although it has been shown that Fhit overexpression leads to apoptosis in many cancer cell lines. We report in this study that Fhit À/À cells derived from gene knockout mice show much stronger S and G2 checkpoint responses than their wild type counterparts. The strong checkpoint responses are regulated by the ATR/CHK1 pathway, which contributes to the radioresistance of Fhit À/À cells. These results indicate an association of Fhit gene inactivation with increased survival after DNA damage, which is related to the over-active checkpoints regulated by the ATR/ CHK1 pathway. These results also suggest the potential effects of Fhit-dependent DNA damage response on tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.