Marine conservation design and fisheries management are increasingly integrating biophysical, socio-economic and governance considerations. Integrative approaches are adopted to achieve more effective, equitable, inclusive, and robust marine policies and practices. This paper describes a participatory process to co-produce biophysical, socio-economic, and governance principles to guide the design and management of marine reserves in three regions of Mexico: the Pacific region of the Baja California Peninsula, the Gulf of California, and the Mexican Caribbean. The process of co-producing the principles included convening a coordination team, reviewing the science, convening multi-stakeholder workshops, developing and communicating the principles with key practitioners and policy makers, and supporting uptake and application to policy and practice. Biophysical principles were related to: habitat representation and risk spreading; protecting critical, special and unique areas; incorporating connectivity; allowing time for recovery; adapting to changes in climate and ocean chemistry; and considering threats and opportunities. Socio-economic principles focused on: integrating the social context, local aspirations, and human-environment interactions; considering economic and non-economic uses, promoting an equitable distribution of costs and benefits, and respecting and maintaining cultural identity and diversity. Governance principles prioritized establishing and ensuring legitimacy and institutional continuity; implementing collaborative and adaptive management; and, promoting effective management. The paper also examines early efforts to implement the principles, next steps to promote further uptake and application in Mexico, and lessons learned from the process. Thus it provides insights into a practical process and a set of principles that are valuable to inform marine conservation and fisheries management processes elsewhere.
Climate-smart conservation addresses the vulnerability of biodiversity to climate change impacts but may require transboundary considerations. Here, we adapt and refine 16 biophysical guidelines for climate-smart marine reserves for the transboundary California Bight ecoregion. We link several climate-adaptation strategies (e.g., maintaining connectivity, representing climate refugia, and forecasting effectiveness of protection) by focusing on kelp forests and associated species. We quantify transboundary larval connectivity along ~800 km of coast and find that the number of connections and the average density of larvae dispersing through the network under future climate scenarios could decrease by ~50%, highlighting the need to protect critical steppingstone nodes. We also find that although focal species will generally recover with 30% protection, marine heatwaves could hinder subsequent recovery in the following 50 years, suggesting that protecting climate refugia and expanding the coverage of marine reserves is a priority. Together, these findings provide a first comprehensive framework for integrating climate resilience for networks of marine reserves and highlight the need for a coordinated approach in the California Bight ecoregion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.