The evolution of the karyotype and genome size was examined in species of Crepis sensu lato. The phylogenetic relationships, inferred from the plastid and nrITS DNA sequences, were used as a framework to infer the patterns of karyotype evolution. Five different base chromosome numbers (x = 3, 4, 5, 6, and 11) were observed. A phylogenetic analysis of the evolution of the chromosome numbers allowed the inference of x = 6 as the ancestral state and the descending dysploidy as the major direction of the chromosome base number evolution. The derived base chromosome numbers (x = 5, 4, and 3) were found to have originated independently and recurrently in the different lineages of the genus. A few independent events of increases in karyotype asymmetry were inferred to have accompanied the karyotype evolution in Crepis. The genome sizes of 33 Crepis species differed seven-fold and the ancestral genome size was reconstructed to be 1 C = 3.44 pg. Both decreases and increases in the genome size were inferred to have occurred within and between the lineages. The data suggest that, in addition to dysploidy, the amplification/elimination of various repetitive DNAs was likely involved in the genome and taxa differentiation in the genus.
The karyotypes of Allium , a genus that comprises many crops and ornamental plants, are relatively poorly studied. To extend our knowledge on karyotype structure of the genus, the chromosomal organization of rRNA genes and CMA/DAPI bands was studied. Fluorescence in situ hybridization using 5S and 35S rDNA probes and banding methods (silver staining and CMA 3 /DAPI staining) were used to analyze the karyotypes of eight cultivated Allium L. species. Analyzed Allium taxa revealed three different basic chromosome numbers ( x = 7, 8, 9) and three different ploidy levels (diploid, triploid, and tetraploid). The rDNA sites chromosomal organization is reported the first time for the six species ( A . moly , A . oreophilum , A . karataviense , A . nigrum , A . sphaerocephalon , A . porrum ). The Allium species that were analyzed showed a high level of interspecies polymorphism in the number and localization of the rDNA sites. The fluorescence in situ hybridization patterns of 35S rDNA sites were more polymorphic than those of the 5S rDNA in the diploid species. Several groups of similar chromosomes could be distinguished among the chromosomes that had rDNA sites in the polyploid species. Each of the groups had three chromosomes (triploid A . sphaerocephalon L.) or four chromosomes (tetraploid A . porrum L.) suggesting their autopolyploid origin. In the genomes of four of the analyzed species, only some of the 35S rDNA sites were transcriptionally active. Fluorochrome banding revealed that the CMA 3 + bands were associated with the 35S rDNA sites in all of the species that were analyzed, except A . fistulosum L. in which positive CMA 3 + bands were detected in the terminal position of all of the chromosome arms. The rDNA sequences, nucleolar organizer regions (NORs), and CMA/DAPI bands are very good chromosome markers that allowed to distinguished from two to five pairs of homologous chromosomes in analyzed Allium species. The karyotypes of the studied species could be clearly distinguished by the number and position of the rDNA sites, NORs, and CMA/DAPI bands, which revealed high interspecific differentiation among the taxa. Electronic supplementary material The online version of this article (10.1007/s13353-018-0474-1) contains supplementary material, which is available to authorized users.
Cytogenetics constitutes a branch of genetics that is focused on the cellular components, especially chromosomes, in relation to heredity and genome structure, function and evolution. The use of modern cytogenetic approaches and the latest microscopes with image acquisition and processing systems enables the simultaneous two- or three-dimensional, multicolour visualisation of both single-copy and highly-repetitive sequences in the plant genome. The data that is gathered using the cytogenetic methods in the phylogenetic background enable tracing the evolution of the plant genome that involve changes in: (i) genome sizes; (ii) chromosome numbers and morphology; (iii) the content of repetitive sequences and (iv) ploidy level. Modern cytogenetic approaches such as FISH using chromosome- and genome-specific probes have been widely used in studies of the evolution of diploids and the consequences of polyploidy. Nowadays, modern cytogenetics complements analyses in other fields of cell biology and constitutes the linkage between genetics, molecular biology and genomics.
Although Crepis was the first model plant group in which chromosomal changes were considered to play an important role in speciation, their chromosome structure and evolution have been barely investigated using molecular cytogenetic methods. The aim of the study was to provide a better understanding of the patterns and directions of Crepis chromosome evolution, using comparative analyses of rDNA loci number and localisation. The chromosome base number and chromosomal organisation of 5S and 35S rDNA loci were analysed in the phylogenetic background for 39 species of Crepis, which represent the evolutionary lineages of Crepis sensu stricto and Lagoseris, including Lapsana communis. The phylogenetic relationships among all the species were inferred from nrITS and newly obtained 5S rDNA NTS sequences. Despite high variations in rDNA loci chromosomal organisation, most species had a chromosome with both rDNA loci within the same (usually short) chromosomal arm. The comparative analyses revealed several independent rDNA loci number gains and loci repositioning that accompanied diversification and speciation in Crepis. Some of the changes in rDNA loci patterns were reconstructed for the same evolutionary lineages as descending dysploidy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.